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Abstract
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1 Introduction

“The global recovery has been disappointing (...) Year after year we have had to

explain from mid-year on why the global growth rate has been lower than predicted

as little as two quarters back”. Stanley Fischer, August 2014.

The slow pace of the recovery from the Great Recession of 2007-2009 has prompted ques-

tions about whether the long-run growth rate of GDP in advanced economies is lower now

than it has been on average over the past decades (see e.g. Fernald, 2014, Gordon, 2014b,

Summers, 2014). Indeed, forecasts of US and global real GDP growth have been persistently

too optimistic for the last six years.1 As emphasized by Orphanides (2003), real-time mis-

perceptions about the long-run growth of the economy can play a large role in monetary

policy mistakes. Moreover, small changes in assumptions about the long-run growth rate

of output can have large implications on fiscal sustainability calculations (Auerbach, 2011).

This calls for a framework that takes the uncertainty about long-run growth seriously and

can inform decision-making in real time. In this paper, we present a dynamic factor model

(DFM) which allows for gradual changes in the mean and the variance of real output growth.

By incorporating a broad panel of economic activity indicators, DFMs are capable of pre-

cisely estimating the cyclical comovement in macroeconomic data in a real-time setting. Our

model exploits this to track changes in the long-run growth rate of real GDP in a timely and

reliable manner, separating them from their cyclical counterpart.2

The evidence of a decline in long-run US growth is accumulating, as documented by the

recent growth literature such as Fernald and Jones (2014). Lawrence Summers and Robert

Gordon have articulated a particularly pessimistic view of long-run growth which contrasts

1For instance, Federal Open Market Committee (FOMC) projections since 2009 expected US growth to
accelerate substantially, only to downgrade the forecast back to 2% throughout the course of the subsequent
year. An analysis of forecasts produced by international organizations and private sector economists reveals
the same pattern, see Pain et al. (2014) for a retrospective.

2Throughout this paper, our concept of the long run refers to changes in growth that are permanent in
nature, i.e. do not mean-revert, as in Beveridge and Nelson (1981). In practice this should be thought of as
frequencies lower than the business cycle.
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with the optimism prevailing before the Great Recession (see Jorgenson et al., 2006). To

complement this evidence, we start our analysis by presenting the results of two popular

structural break tests proposed by Nyblom (1989) and Bai and Perron (1998). Both suggest

that a possible shift in the mean of US real GDP growth exists, the latter approach suggesting

that a break probably occurred in the early part of the 2000’s.3 However, sequential testing

using real-time data reveals that the break would not have been detected at conventional

significance levels until as late as mid-2012, highlighting the problems of conventional break

tests for real-time analysis (see also Benati, 2007). To address this issue, we introduce

two novel features into an otherwise standard DFM of real activity data. First, we allow

the mean of real GDP growth, and possibly other series, to drift gradually over time. As

emphasized by Cogley (2005), if the long-run output growth rate is not constant, it is optimal

to give more weight to recent data when estimating its current state. By taking a Bayesian

approach, we can combine our prior beliefs about the rate at which the past information

should be discounted with the information contained in the data. We also characterize

the uncertainty around estimates of long-run growth taking into account both filtering and

parameter uncertainty. Second, we allow for stochastic volatility (SV) in the innovations

to both factors and idiosyncratic components. Given our interest in studying the entire

postwar period, the inclusion of SV is essential to capture the substantial changes in the

volatility of output that have taken place in this sample, such as the “Great Moderation”

first reported by Kim and Nelson (1999a) and McConnell and Perez-Quiros (2000), as well

as the cyclicality of macroeconomic volatility as documented by Jurado et al. (2014).

When applied to US data, our model concludes that long-run GDP growth declined

meaningfully during the 2000’s and currently stands at about 2%, more than one percentage

point lower than the postwar average. The results are supportive of a gradual decline rather

than a discrete break. Since in-sample results obtained with revised data often underestimate

the uncertainty faced by policymakers in real time, we repeat the exercise using real-time

3This finding is consistent with the analysis of US real GDP by Luo and Startz (2014), as well as Fernald
(2014), who applies the Bai and Perron (1998) test to US labor productivity.

3



vintages of data. The model detects the fall from the beginning of the 2000’s onwards, and

by the summer of 2010 it reaches the significant conclusion that a decline in long-run growth

is behind the slow recovery, well before the structural break tests become conclusive.

We also investigate the performance of the model in “nowcasting” short-term develop-

ments in GDP. Since the seminal contributions of Evans (2005) and Giannone et al. (2008)

DFMs have become the standard tool for this purpose.4 Interestingly, our analysis shows

that standard DFM forecasts revert very quickly to the unconditional mean of GDP, so

taking into account the variation in long-run GDP growth substantially improves point and

density GDP forecasts even at very short horizons.

Finally, we extend our model in order to disentangle the drivers of secular fluctuations of

GDP growth. Edge et al. (2007) emphasize the relevance as well as the difficulty of tracking

permanent shifts in productivity growth in real time. In our framework, long-run output

growth can be decomposed into labor productivity and labor input trends. The results of this

decomposition exercise point to a slowdown in labor productivity as the main driver of recent

weakness in GDP growth. Applying the model to other advanced economies, we provide

evidence that the weakening in labor productivity appears to be a global phenomenon.

Our work is closely related to two strands of literature. The first one encompasses papers

that allow for structural changes within the DFM framework. Del Negro and Otrok (2008)

model time variation in factor loadings and volatilities, while Marcellino et al. (2014) show

that the addition of SV improves the performance of the model for short-term forecasting of

euro area GDP.5 Acknowledging the importance of allowing for time-variation in the means

of the variables, Stock and Watson (2012) pre-filter their data set in order to remove any

low-frequency trends from the resulting growth rates using a biweight local mean. In his

comment to their paper, Sims (2012) suggests to explicitly model, rather than filter out,

these long-run trends, and emphasizes the importance of evolving volatilities for describing

4An extensive survey of the nowcasting literature is provided by Banbura et al. (2012), who also demon-
strate, in a real-time context, the good out-of-sample performance of DFM nowcasts.

5While the model of Del Negro and Otrok (2008) includes time-varying factor loadings, the means of the
observable variables are still treated as constant.
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and understanding macroeconomic data. We see the present paper as extending the DFM

literature, and in particular its application to tracking GDP, in the direction suggested by

Chris Sims. The second strand of related literature takes a similar approach to decomposing

long-run GDP growth into its drivers, in particular Gordon (2010, 2014a) and Reifschnei-

der et al. (2013). Relative to these studies, we emphasize the importance of using a broader

information set, as well as a Bayesian approach, which allows to use priors to inform the esti-

mate of long-run growth, and to characterize the uncertainty around the estimate stemming

both from filtering and parameter uncertainty.

The remainder of this paper is organized as follows. Section 2 presents preliminary ev-

idence of a slowdown in long-run US GDP growth. Section 3 discusses the implications

of time-varying long-run output growth and volatility for DFMs and presents our model.

Section 4 applies the model to US data and documents the decline in long-run growth. The

implications for tracking GDP in real time as well as the key advantages of our method-

ology are discussed. Section 5 decomposes the changes in long-run output growth into its

underlying drivers. Section 6 concludes.

2 Preliminary Evidence

The literature on economic growth favors a view of the long-run growth rate as a process

that evolves over time. It is by now widely accepted that a slowdown in productivity and

long-run output growth occurred in the early 1970’s, and that accelerating productivity in

the IT sector led to a boom in the late 1990’s.6 In contrast, in the context of econometric

modeling the possibility that long-run growth is time-varying is the source of a long-standing

controversy. In their seminal contribution, Nelson and Plosser (1982) model the (log) level of

real GDP as a random walk with drift. This implies that after first-differencing, the resulting

growth rate fluctuates around a constant mean, an assumption still embedded in many

6For a retrospective on the productivity slowdown, see Nordhaus (2004). Oliner and Sichel (2000) provide
evidence on the role of the IT sector in the acceleration of the late 1990’s.
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econometric models. After the slowdown in productivity became apparent in the 1970’s,

many researchers such as Clark (1987) modeled the drift term as an additional random walk,

implying that the level of GDP is integrated of order two. The latter assumption would also

be consistent with the local linear trend model of Harvey (1985), the Hodrick and Prescott

(1997) filter, and Stock and Watson (2012)’s practice of removing a local biweight mean from

the growth rates before estimating a DFM. The I(2) assumption is nevertheless controversial

since it implies that the growth rate of output can drift without bound. Consequently, papers

such as Perron and Wada (2009), have modeled the growth rate of GDP as stationary around

a trend with one large break around 1973.

Figure 1: Real-Time Test Statistics of the Nyblom and Bai-Perron Tests
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Note: The gray and black solid lines are the values of the test statistics obtained from
sequentially re-applying the Nyblom (1989) and Bai and Perron (1998) tests in real time as
new National Accounts vintages are being published. In both cases, the sample starts in
1947:Q2 and the test is re-applied for every new data release occurring after the beginning
of 2000. The dotted and dashed horizontal lines represent the 5% and 10% critical values
corresponding to the two tests.

Ever since the Great Recession of 2007-2009 US real GDP has grown well below its

postwar average, once again raising the question whether its mean may have declined. There

are two popular strategies that could be followed from a frequentist perspective to detect

parameter instability or the presence of breaks in the mean growth rate. The first one
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is Nyblom’s (1989) L-test as described in Hansen (1992), which tests the null hypothesis

of constant parameters against the alternative that the parameters follow a martingale.

Modeling real GDP growth as an AR(1) over the sample 1947-2015 this test rejects the

stability of the constant term at the 10% significance level.7 The second commonly used

approach, which can determine the number and timing of multiple discrete breaks, is the

Bai and Perron (1998) test. This test finds evidence in favor of a single break in the mean of

US real GDP growth at the 10%-level. The most likely break date is in the second quarter of

2000. In related research, Fernald (2014) provides evidence for breaks in labor productivity

in 1973:Q2, 1995:Q3, and 2003:Q1, and links the latter two to developments in the IT sector.

From a Bayesian perspective, Luo and Startz (2014) calculate the posterior probability of a

single break and find the most likely break date to be 2006:Q1 for the full postwar sample

and 1973:Q1 for a sample excluding the 2000’s.

The above results indicate that substantial evidence for a recent change in the mean

of US GDP growth has built up. However, the strategy of applying conventional tests and

introducing deterministic breaks into econometric models is not satisfactory for the purposes

of real-time decision making. In fact, the detection of change in the mean of GDP growth can

arrive with substantial delay. To demonstrate this, a sequential application of the Nyblom

(1989) and Bai and Perron (1998) tests using real-time data is presented in Figure 1. The

evolution of the test statistics in real-time reveals that a break would not have been detected

at the 10% significance levels until as late as mid-2012, which is more than ten years later

than the actual break date suggested by the Bai and Perron (1998) procedure. The Nyblom

(1989) test, which is designed to detect gradual change rather than a discrete break, becomes

significant roughly at the same time. This lack of timeliness highlights the importance of an

econometric framework capable of quickly adapting to changes in long-run growth as new

information arrives.

7The same result holds for an AR(2) specification. In both cases, stability of the autoregressive coefficients
cannot be rejected, whereas stability of the variance is rejected at the 1%-level. Section B of the Online
Appendix provides the full results of both tests applied in this section.
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3 Econometric Framework

DFMs in the spirit of Geweke (1977), Stock and Watson (2002) and Forni et al. (2009)

capture the idea that a small number of unobserved factors drives the comovement of a

possibly large number of macroeconomic time series, each of which may be contaminated by

measurement error or other sources of idiosyncratic variation. Their theoretical appeal (see

e.g. Sargent and Sims, 1977 or Giannone et al., 2006), as well as their ability to parsimo-

niously model large data sets, have made them a workhorse of empirical macroeconomics.

Giannone et al. (2008) and Banbura et al. (2012) have pioneered the use of DFMs to produce

current-quarter forecasts (“nowcasts”) of GDP growth by exploiting more timely monthly

indicators and the factor structure of the data. Given the widespread use of DFMs to track

GDP in real time, this paper aims to make these models robust to changes in long-run

growth. We do so by introducing two novel features into the DFM framework. First, we

allow the long-run growth rate of real GDP, and possibly other series, to vary over time.

Second, we allow for stochastic volatility (SV) in the innovations to both factors and id-

iosyncratic components, given our interest in studying the entire postwar period for which

drastic changes in volatility have been documented. With these changes, the DFM proves

to be a powerful tool to detect changes in long-run growth. The information contained in a

broad panel of activity indicators facilitates the timely decomposition of real GDP growth

into persistent long-run movements, cyclical fluctuations and short-lived noise.

3.1 The Model

Let yt be an n × 1 vector of observable macroeconomic time series, and let ft denote

a k × 1 vector of latent common factors. It is assumed that n >> k, i.e. the number of

observables is much larger than the number of factors. Formally,

yt = ct + Λft + ut, (1)
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where Λ contains the loadings on the common factors and ut is a vector of idiosyncratic

components.8 Shifts in the long-run mean of yt are captured by time-variation in ct. In

principle one could allow time-varying intercepts in all or a subset of the variables in the

system. Moreover, time variation in a given series could be shared by other series. ct is

therefore flexibly specified as

ct =

B 0

0 c


at

1

 , (2)

where at is an r× 1 vector of time-varying means, B is an m× r matrix which governs how

the time-variation affects the corresponding observables, and c is an (n −m) × 1 vector of

constants. In our baseline specification, at will be a scalar capturing time-variation in long-

run real GDP growth, which is shared by real consumption growth, so that r = 1,m = 2. A

detailed discussion of this and additional specifications of ct will be provided in Section 3.2.

Throughout the paper, we focus on the case of a single dynamic factor by setting k = 1

(i.e. ft = ft).
9 The laws of motion of the latent factor and the idiosyncratic components are

(1− φ(L))ft = σεtεt, (3)

(1− ρi(L))ui,t = σηi,tηi,t, i = 1, . . . , n (4)

where φ(L) and ρi(L) denote polynomials in the lag operator of order p and q, respectively.

The idiosyncratic components are cross-sectionally orthogonal and are assumed to be uncor-

related with the common factor at all leads and lags, i.e. εt
iid∼ N(0, 1) and ηi,t

iid∼ N(0, 1).

Finally, the dynamics of the model’s time-varying parameters are specified to follow

8The model can be easily extended to include lags of the factor in the measurement equation. In the
latter case, it is sensible to avoid overfitting by choosing priors that shrink the additional lag coefficients
towards zero (see D’Agostino et al., 2015, and Luciani and Ricci, 2014). We consider this possibility when
we explore robustness of our results to using larger data panels in Section 4.6.

9For the purpose of tracking real GDP with a large number of closely related activity indicators, the use
of one factor is appropriate, which is explained in more detail in Sections 4.1 and 4.2. Also note that we
order real GDP growth as the first element of yt, and normalize the loading for GDP to unity. This serves
as an identifying restriction in our estimation algorithm. Bai and Wang (2015) discuss minimal identifying
assumptions for DFMs.
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driftless random walks:

aj,t = aj,t−1 + vaj,t , vaj,t
iid∼ N(0, ω2

a,j) j = 1, . . . , r (5)

log σεt = log σεt−1 + vε,t, vε,t
iid∼ N(0, ω2

ε) (6)

log σηi,t = log σηi,t−1
+ vηi,t , vηi,t

iid∼ N(0, ω2
η,i) i = 1, . . . , n (7)

where aj,t are the r time-varying elements in at, and σεt and σηi,t capture the SV of the

innovations to factor and idiosyncratic components. Our motivation for specifying the time-

varying parameters as random walks is similar to Primiceri (2005). While in principle it is

unrealistic model real GDP growth as a process that could wander in an unbounded way, as

long as the variance of the process is small and the drift is considered to be operating for a

finite period of time, the assumption is innocuous. Moreover, modeling a trend as a random

walk is more robust to misspecification when the actual process is instead characterized

by discrete breaks, whereas models with discrete breaks might not be robust to the true

process being a random walk.10 Finally, the random walk assumption also has the desirable

feature that, unlike stationary models, confidence bands around forecasts of real GDP growth

increase with the forecast horizon, reflecting uncertainty about the possibility of future breaks

or drifts in long-run growth.

Note that a standard DFM is usually specified under two assumptions. First, the orig-

inal data have been differenced appropriately so that both the factor and the idiosyncratic

components can be assumed to be stationary. Second, it is assumed that the innovations

in the idiosyncratic and common components are iid. In equations (1)-(7) we have relaxed

these assumptions to allow for two novel features, a stochastic trend in the mean of selected

series, and SV. By shutting down these features, we can recover the specifications previously

proposed in the literature, which are nested in our framework. We obtain the DFM with SV

10We demonstrate this point with the use of Monte Carlo simulations, showing that a random walk trend
in real GDP growth ‘learns’ quickly about a discrete break once it has occurred. On the other hand, the
random walk does not detect a drift when there is not one, despite the presence of a large cyclical component.
Online Appendix C provides a discussion and the full results of these simulations.

10



of Marcellino et al. (2014) if we shut down time-variation in the intercepts of the observables,

i.e. set r = m = 0 and ct = c. If we further shut down the SV, i.e. set ω2
a,j = ω2

ε = ω2
η,i = 0,

we obtain the specification of Banbura and Modugno (2014) and Banbura et al. (2012).

3.2 A Baseline Specification for Long-Run Growth

Equations (1) and (2) allow for stochastic trends in the mean of all or a subset of selected

observables in yt. This paper focuses on tracking changes in the long-run growth rate of real

GDP. For this purpose, the simplest specification of ct is to include a time-varying intercept

only in GDP and to set B = 1. However, a number of empirical studies (e.g. Harvey and

Stock, 1988, Cochrane, 1994, and Cogley, 2005) argue that incorporating information about

consumption is informative about the permanent component in GDP as predicted by the

permanent income hypothesis. The theory predicts that consumers, smoothing consumption

throughout their lifetime, should react more strongly to permanent, as opposed to transi-

tory, changes in income. As a consequence, looking at GDP and consumption data together

will help separating growth into long-run and cyclical fluctuations.11 Therefore, our baseline

specification imposes that consumption and output grow at the same rate gt in the long-run.

On the contrary, we do not impose that investment also grows at this rate, as would be the

case in the basic neoclassical growth model, since the presence of investment-specific techno-

logical change implies that real investment has a different low-frequency trend (Greenwood

et al., 1997).

Formally, ordering real GDP and consumption growth first, and setting m = 2 and r = 1,

this is represented as

at = gt, B = [1 1]′ (8)

Note that in this baseline specification we model time-variation only in the intercept for

GDP and consumption while leaving it constant for the other observables. Of course it may

11While a strict interpretation of the permanent income hypothesis is rejected in the data, from an econo-
metric point of view the statement applies as long as permanent changes are the main driver of consumption.
See Cochrane (1994) for a very similar discussion.
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be the case that some of the remaining n − m series in yt feature low frequency variation

in their means. For instance, as mentioned above, this could be the case for investment.

The key question is whether leaving it unspecified will affect the estimate of the long-run

growth rate of GDP, which is our main object of interest. We ensure that this is not the

case by allowing for persistence (and, in particular, we do not rule out unit roots) in the

idiosyncratic components. If a series does feature a unit root which is not included in

at, its trend component will be absorbed by the idiosyncratic component. The choice of

which elements to include in at therefore reflects the focus of a particular application.12 Of

course, if two series share the same underlying low-frequency component, and this is known

with certainty, explicitly accounting for the shared low frequency variation will improve the

precision of the estimation, but the risk of incorrectly including the trend is much larger than

the risk of incorrectly excluding it. Therefore, in our baseline specification we include in at

the intercept for GDP and consumption, while leaving any possible low-frequency variation

in other series to be captured by the respective idiosyncratic components.13

An extension to include additional time-varying intercepts is straightforward through the

flexible construction of ct in equation (2). In fact, in Section 5 we explore how interest in

the low-frequency movements of additional series leads to alternative choices for at and B.14

12In principle, these unmodeled trends could still be recovered from our specification by applying a
Beveridge-Nelson decomposition to its estimated idiosyncratic component. In practice, any low-frequency
variation in the idiosyncratic component is likely to be obscured by a large amount of high frequency noise
in the data and as result the extracted Beveridge-Nelson trend component will be imprecisely estimated,
and as Morley et al. (2003) show, will not be smooth. In our specification, the elements of at are instead
extracted directly, so that we are able to improve the extraction by imposing additional assumptions (e.g.
smoothness) and prior beliefs (e.g. low variability) on its properties.

13We confirm this line of reasoning with a series of Monte Carlo experiments, in which data is generated
from a system that features low-frequency movements in more series, which are left unmodeled in the
estimation. Both in the case of series with independent trends and the case of series which share the trend
of interest, the fact that they are left unmodeled has little impact on the estimate of the latter. Online
Appendix C presents further discussion and the full results of these simulations.

14Note that the limiting case explicitly models time-varying intercept in all indicators, so that m = r = n
and B = In, i.e. an identity matrix of dimension n. See Creal et al. (2010) and Fleischman and Roberts
(2011) for similar approaches. This setup would imply that the number of state variables increases with the
number of observables, which severely increases the computational burden of the estimation, while offering
little additional evidence with respect to the focus of this paper.
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3.3 Dealing with Mixed Frequencies and Missing Data

Tracking activity in real time requires a model that can efficiently incorporate information

from series measured at different frequencies. In particular, it must include both quarterly

variables, such as the growth rate of real GDP, as well as more timely monthly indicators of

real activity. Therefore, the model is specified at monthly frequency, and following Mariano

and Murasawa (2003), the (observed) quarterly growth rates of a generic quarterly variable,

xqt , can be related to the (unobserved) monthly growth rate xmt and its lags using a weighted

mean. Specifically,

xqt =
1

3
xmt +

2

3
xmt−1 + xmt−2 +

2

3
xmt−3 +

1

3
xmt−4, (9)

and only every third observation of xqt is actually observed. Substituting the corresponding

line of (1) into (9) yields a representation in which the quarterly variable depends on the

factor and its lags. The presence of mixed frequencies is thus reduced to a problem of missing

data in a monthly model.

Besides mixed frequencies, additional sources of missing data in the panel include: the

“ragged edge” at the end of the sample, which stems from the non-synchronicity of data

releases; missing data at the beginning of the sample, since some data series have been created

or collected more recently than others; and missing observations due to outliers and data

collection errors. Our Bayesian estimation method exploits the state space representation

of the DFM and jointly estimates the latent factors, the parameters, and the missing data

points using the Kalman filter (see Durbin and Koopman, 2012, for a textbook treatment).

3.4 State Space Representation and Estimation

The model features autocorrelated idiosyncratic components (see equation (4)). In order

to cast it in state-space form, we include the idiosyncratic components of the quarterly

variables in the state vector, and we redefine the system for the monthly indicators in terms

of quasi-differences (see e.g. Kim and Nelson, 1999b, pp. 198-199, and Bai and Wang,
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2015).15 The model is estimated with Bayesian methods simulating the posterior distribution

of parameters and factors using a Markov Chain Monte Carlo (MCMC) algorithm. We

closely follow the Gibbs-sampling algorithm for DFMs proposed by Bai and Wang (2015),

but extend it to include mixed frequencies, the time-varying intercept, and SV. The SVs

are sampled using the approximation of Kim et al. (1998), which is considerably faster than

the exact Metropolis-Hastings algorithm of Jacquier et al. (2002). Our complete sampling

algorithm together with the details of the state space representation can be found in Section

D of the Online Appendix.

4 Results for US Data

4.1 Data Selection

Our data set includes four key business cycle variables measured at quarterly frequency

(output, consumption, investment and aggregate hours worked), as well as a set of 24 monthly

indicators which are intended to provide additional information about cyclical developments

in a timely manner.

The included quarterly variables are strongly procyclical and are considered key indicators

of the business cycle (see e.g. Stock and Watson, 1999). Furthermore, theory predicts

that they will be useful in disentangling low frequency movements from cyclical fluctuations

in output growth. Indeed, as discussed in Section 3.2, the permanent income hypothesis

predicts that consumption data will be particularly useful for the estimation of the long-run

growth component, gt.
16 On the other hand, investment and hours worked are very sensitive

15Since the quarterly variables are observed only every third month, we cannot take the quasi-difference
for their idiosyncratic components, which are instead added as an additional state with the corresponding
transition dynamics. Banbura and Modugno (2014) suggest including all of the idiosyncratic components
as additional elements of the state vector. Our solution has the desirable feature that the number of state
variables will increase with the number of quarterly variables, rather than the total number of variables,
leading to a gain of computational efficiency.

16Due to the presence of faster technological change in the durable goods sector there is a downward trend
in the relative price of durable goods. As a consequence, measured consumption grows faster than overall
GDP. Following a long tradition in the literature (see e.g. Whelan, 2003), we construct a Fisher index of
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to cyclical fluctuations, and thus will be particularly informative for the estimation of the

common factor, ft.
17

The additional monthly indicators are crucial to our objective of disentangling in real time

the cyclical and long-run components of GDP growth, since the quarterly variables are only

available with substantial delay. In principle, a large number of candidate series are available

to inform the estimate of ft, and indirectly, of gt. In practice, however, macroeconomic data

series are typically clustered in a small number of broad categories (such as production,

employment, or income) for which disaggregated series are available along various dimensions

(such as economic sectors, demographic characteristics, or expenditure categories). The

choice of which available series to include for estimation can therefore be broken into, first,

a choice of which broad categories to include, and second, to which level and along which

dimensions of disaggregation.

With regards to which broad categories of data to include, previous studies agree that

prices, monetary and financial indicators are uninformative for the purpose of tracking real

GDP, and argue for extracting a single common factor that captures real economic activity.18

As for the possible inclusion of disaggregated series within each category, Boivin and Ng

(2006) argue that the presence of strong correlation in the idiosyncratic components of

disaggregated series of the same category will be a source of misspecification that can worsen

the performance of the model in terms of in-sample fit and out-of-sample forecasting of

key series.19 Alvarez et al. (2012) investigate the trade-off between DFMs with very few

non-durables and services and use its growth rate as an observable variable in the panel. It can be verified
that the ratio of consumption defined in this manner to real GDP displays no trend in the data, unlike the
trend observed in the ratio of overall consumption to GDP.

17We define investment as a chain-linked aggregate of business fixed investment and consumption of
durable goods, which is consistent with our treatment of consumption. In order to obtain a measure of hours
for the total economy, we follow the methodology of Ohanian and Raffo (2012) and benchmark the quarterly
series of hours in the non-farm business sector provided by the BLS to the annual estimates of hours in the
total economy compiled by the Conference Boards Total Economy Database (TED). The TED series has
the advantage of being comparable across countries (Ohanian and Raffo, 2012), which will be useful for our
international results in Section 5.

18Giannone et al. (2005) conclude that that prices and monetary indicators do not contribute to the
precision of GDP nowcasts. Banbura et al. (2012), Forni et al. (2003) and Stock and Watson (2003) find at
best mixed results for financial variables.

19This problem is exacerbated by the fact that more detailed disaggregation levels and dimensions are
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indicators, where the good large-sample properties of factor models are unlikely to hold,

and those with a very large amount of indicators, where the problems above are likely to

arise. They conclude that using a medium-sized panel with representative indicators of each

category yields the best forecasting results.

The above considerations lead us to select 24 monthly indicators that include the high-

level aggregates for all of the available broad categories that capture real activity, without

overweighting any particular category. The complete list of variables contained in our data

set is presented in Table 1. As the table shows, we include representative series of expenditure

and income, the labor market, production and sales, foreign trade, housing and business and

consumer confidence.20 The inclusion of all the available monthly surveys is particularly

important. Apart from being the most timely series available, these are unlikely to feature

permanent shifts in their mean by construction, and have a high signal-to-noise ratio. They

thus provide a clean signal to separate the cyclical component of GDP growth from its

long-run counterpart. In Section 4.6 we explore sensitivity of our results to the size and

composition of the data panel used.

Our panel spans the period January 1947 to March 2015. The start of our sample

coincides with the year for which quarterly national accounts data are available from the

Bureau of Economic Analysis. This enables us to study the evolution of long-run growth

over the entire postwar period.21

available for certain categories of data, such as employment, meaning that the disaggregation will automat-
ically ‘tilt’ the factor estimates towards that category.

20When there are multiple candidates for the high-level aggregate of a category, we include both. For ex-
ample, we include employment as measured both by the establishment and household surveys, and consumer
confidence as surveyed both by the Conference Board and the University of Michigan.

21We take full advantage of the Kalman filter’s ability to deal with missing observations at any point in
the sample, and we are able to incorporate series that become available substantially later than 1947, up to
as late as 2007. Note that for consumption expenditures, monthly data became available in 1959, whereas
quarterly data is available from 1947. In order to use all available data, we apply the polynomial in Equation
(9) to the monthly data and treat the series as quarterly, with available observations for the last month of
the quarter for 1947-1958 and for all months since 1959.
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Table 1: Data series used in empirical analysis

Type Start Date Transform. Lag

Quarterly time series
Real GDP Expenditure & Inc. Q2:1947 % QoQ Ann 26
Real Consumption (excl. durables) Expenditure & Inc. Q2:1947 % QoQ Ann 26
Real Investment (incl. durable cons.) Expenditure & Inc. Q2:1947 % QoQ Ann 26
Total Hours Worked Labor Market Q2:1948 % QoQ Ann 28

Monthly indicators
Real Personal Income less Transfers Expenditure & Inc. Feb 59 % MoM 27
Industrial Production Production & Sales Jan 47 % MoM 15
New Orders of Capital Goods Production & Sales Mar 68 % MoM 25
Real Retail Sales & Food Services Production & Sales Feb 47 % MoM 15
Light Weight Vehicle Sales Production & Sales Feb 67 % MoM 1
Real Exports of Goods Foreign Trade Feb 68 % MoM 35
Real Imports of Goods Foreign Trade Feb 69 % MoM 35
Building Permits Housing Feb 60 % MoM 19
Housing Starts Housing Feb 59 % MoM 26
New Home Sales Housing Feb 63 % MoM 26
Payroll Empl. (Establishment Survey) Labor Market Jan 47 % MoM 5
Civilian Empl. (Household Survey) Labor Market Feb 48 % MoM 5
Unemployed Labor Market Feb 48 % MoM 5
Initial Claims for Unempl. Insurance Labor Market Feb 48 % MoM 4

Monthly indicators (soft)
Markit Manufacturing PMI Business Confidence May 07 - -7
ISM Manufacturing PMI Business Confidence Jan 48 - 1
ISM Non-manufacturing PMI Business Confidence Jul 97 - 3
NFIB Small Business Optimism Index Business Confidence Oct 75 Diff 12 M. 15
U. of Michigan: Consumer Sentiment Consumer Confid. May 60 Diff 12 M. -15
Conf. Board: Consumer Confidence Consumer Confid. Feb 68 Diff 12 M. -5
Empire State Manufacturing Survey Business (Regional) Jul 01 - -15
Richmond Fed Mfg Survey Business (Regional) Nov 93 - -5
Chicago PMI Business (Regional) Feb 67 - 0
Philadelphia Fed Business Outlook Business (Regional) May 68 - 0

Notes: % QoQ Ann refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. The last column shows the average
publication lag, i.e. the number of days elapsed from the end of the period that the data
point refers to until its publication by the statistical agency. All series were obtained from
the Haver Analytics database.
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4.2 Model Settings and Priors

The choice of the data set justifies the single-factor structure of the model. ft can in this

case be interpreted as a coincident indicator of real economic activity (see e.g. Stock and

Watson, 1989, and Mariano and Murasawa, 2003). The number of lags in the polynomials

φ(L) and ρ(L) is set to p = 2 and q = 2 as in Stock and Watson (1989). We wish to impose as

little prior information as possible, so we use uninformative priors for the factor loadings and

the autoregressive coefficients of factors and idiosyncratic components. The variances of the

innovations to the time-varying parameters, namely ω2
a, ω

2
ε and ω2

η,i in equations (5)-(7) are

however difficult to identify from the information contained in the likelihood alone. As the

literature on Bayesian VARs documents, attempts to use non-informative priors for these

parameters will in many cases produce posterior estimates which imply a relatively large

amount of time-variation. While this will tend to improve the in-sample fit of the model it is

also likely to worsen out-of-sample forecast performance. We therefore use priors to shrink

these variances towards zero, i.e. towards the standard DFM which excludes time-varying

long-run GDP growth and SV. In particular, for ω2
a we set an inverse gamma prior with

one degree of freedom and scale equal to 0.001.22 For ω2
ε and ω2

η,i we set an inverse gamma

prior with one degree of freedom and scale equal to 0.0001, closely following Cogley and

Sargent (2005) and Primiceri (2005).23 We estimate the model with 7000 replications of the

Gibbs-sampling algorithm, of which the first 2000 are discarded as burn-in draws and the

remaining ones are kept for inference.24

22To gain an intuition about this prior, note that over a period of ten years, this would imply that the
random walk process of the long-run growth rate is expected to vary with a standard deviation of around
0.4 percentage points in annualized terms, which is a fairly conservative prior.

23We provide further explanations and address robustness to the choice of priors in Online Appendix F.
24Thanks to the efficient state space representation discussed above, the improvements in the simulation

smoother proposed by Bai and Wang (2015), and other computational improvements we implemented, the
estimation is very fast. Convergence is achieved after only 1500 iterations, which take less than 20 minutes
in MATLAB using an Intel 3.6 GHz computer with 16GB of DDR3 Ram.
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4.3 In-Sample Results

Panel (a) of Figure 2 plots the posterior median, together with the 68% and 90% posterior

credible intervals of the long-run growth rate of real GDP. This estimate is conditional on the

entire sample and accounts for both filtering and parameter uncertainty. Several features of

our estimate of long-run growth are worth noting. While the growth rate is stable between

3% and 4% during the first decades of the postwar period, a slowdown is clearly visible from

around the late 1960’s through the 1970’s, consistent with the “productivity slowdown”

(Nordhaus, 2004). The acceleration of the late 1990’s and early 2000’s associated with the

productivity boom in the IT sector (Oliner and Sichel, 2000) is also visible. Thus, until the

middle of the decade of the 2000’s, our estimate conforms well to the generally accepted

narrative about fluctuations in potential growth.25 More recently, after peaking at about

3.5% in 2000, the median estimate of the long-run growth rate has fallen to about 2% in early

2015, a more substantial decline than the one observed after the productivity slowdown of the

1970’s. Moreover, the slowdown appears to have happened gradually since the start of the

2000’s, with most of the decline having occurred before the Great Recession.26 Interestingly,

a small rebound is visible at the end of the sample, but long-run growth stands far below

its postwar average of 3.2%, with the 90% posterior credible interval ranging from 1.5% to

2.5%.

Panel (b) plots the time series of quarterly real GDP growth, together with the median

posterior estimates of the common factor, aligned with the mean of real GDP growth. This

plot highlights how the common factor captures the bulk of business-cycle frequency variation

in output growth, while higher frequency, quarter-to-quarter variation is attributed to the

25Online Appendix G provides a comparison of our estimate with the Congressional Budget Office (CBO)
measure of potential growth, with some additional discussion.

26In principle, it is possible that our choice of modeling long-run GDP growth as a random walk is hard-
wiring into our results the conclusion that the decline happened in a gradual way. In experiments with
simulated data, presented in Section C of the Online Appendix, we show that if changes in long-run growth
occur in the form of discrete breaks rather than evolving gradually, the (one-sided) filtered estimates will
exhibit a discrete jump at the moment of the break. Instead, for US data the filtered estimates of the
long-run growth component also decline in a gradual manner (see Figure A.1 in Online Appendix A).
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Figure 2: Trend, cycle and volatility: 1947-2015 (% Ann. Growth Rate)

(a) Posterior estimate of long-run growth
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(b) Posterior estimate of common factor vs. actual GDP growth
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(c) Posterior estimate of common factor volatility
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Note: Panel (a) displays the posterior median (solid), together with the 68% and 90% (dotted
and dashed) posterior credible intervals of long-run real GDP growth. Panel (b) plots actual
real GDP growth (thin) against the posterior median estimate of the common factor, aligned
with the mean of real GDP growth (thick). Panel (c) presents the median (solid), the 68%
and the 90% (dotted and dashed) posterior credible intervals of the volatility of the common
factor, i.e the square root of var(ft) = σ2

ε,t(1− φ2)/[(1 + φ2)((1− φ2)
2 − φ2

1)]. Shaded areas
represent NBER recessions.
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idiosyncratic component. In the latter part of the sample, GDP growth is visibly below the

factor, reflecting the decline in long-run growth.

The posterior estimate of the SV of the common factor is presented in Panel (c). It

is clearly visible that volatility declines over the sample. The late 1940’s and 1950’s were

extremely volatile, with a first large drop in volatility in the early 1960’s. The Great Moder-

ation is also clearly visible, with the average volatility pre-1985 being much larger than the

average of the post-1985 sample. Notwithstanding the large increase in volatility during the

Great Recession, our estimate of the common factor volatility since then remains consistent

with the Great Moderation still being in place. This confirms the early evidence reported

by Gadea-Rivas et al. (2014). It is clear from the figure that volatility spikes during reces-

sions, a feature that brings our estimates close to the recent findings of Jurado et al. (2014)

and Bloom (2014) relating to business-cycle uncertainty.27 It appears that the random walk

specification is flexible enough to capture cyclical changes in volatility as well as permanent

phenomena such as the Great Moderation. Online Appendix A contains analogous charts

for the volatilities of the idiosyncratic components of selected data series. Similar to the

volatility of the common factor, many of the idiosyncratic volatilities present sharp increases

during recessions.

The above results provide evidence that a significant decline in long-run US real GDP

growth occurred over the last decade, and are consistent with a relatively gradual decline

since the early 2000’s. Our estimates show that the bulk of the slowdown from the elevated

levels of growth at the turn of the century occurred before the Great Recession, which is

consistent with the narrative of Fernald (2014) on the fading of the IT productivity boom.

This recent decline is the largest movement in long-run growth observed in the postwar

period.

27It is interesting to note that while in our model the innovations to the level of the common factor and
its volatility are uncorrelated, the fact that increases in volatility are observed during recessions indicate the
presence of negative correlation between the first and second moments, implying negative skewness in the
distribution of the common factor. We believe a more explicit model of this feature is an important priority
for future research.
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4.4 Real-Time Results

As emphasized by Orphanides (2003), macroeconomic time series are heavily revised over

time and in many cases these revisions contain valuable information that was not available

at initial release. Therefore, it is important to assess, using the data available at each point

in time, when the model detected the slowdown in long-run growth. For this purpose, we

reconstruct our data set using vintages of data available from the Federal Reserve Bank of

St. Louis ALFRED data base. Our aim is to replicate as closely as possible the situation

of a decision-maker which would have applied our model in real time. We fix the start

of our sample in 1947:Q1 and use an expanding out-of-sample window which starts on 11

January 2000 and ends on 30 June 2015. This is the longest possible window for which we

are able to include the entire panel in Table 1 using fully real-time data. We then proceed

by re-estimating the model each day in which new data are released.28

Figure 3 looks at the model’s real-time assessment of long-run growth at various points

in time. Panel (a) plots the real-time estimate of current long-run growth, with 68% and

90% uncertainty bands. For comparison, the panel also shows the median response to the

Philadelphia Fed Livingston Survey of Professional Forecasters (SPF) on the average growth

rate for the next 10 years, and the estimate of long-run growth from a model with a constant

intercept for GDP growth. The latter estimate is also updated as new information arrives,

but weighs all points of the sample equally. Panel (b) displays vintages of the median long-

run growth estimate, using information available up to July of each year. The locus traced

by the end point of each vintage corresponds to the current real-time estimate of Panel (a).

The evolution of the baseline model’s estimate of long-run growth when estimated in real

time declines gradually from a peak of about 4% in early 2000 to around 2.5% just after

28In a few cases new indicators were developed after January 2000. For example, the Markit Manufacturing
PMI survey is currently one of the most timely and widely followed indicators, but it started being conducted
in 2007. In those cases, we append to the panel, in real time, the vintages of the new indicators as soon
sufficient history is available. In the example of the PMI, this is the case since mid-2012. By implication, the
number of indicators in our data panel grows when new indicators appear. Full details about the construction
of the vintage database are available in Online Appendix E.
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Figure 3: Long-Run GDP Growth Estimates in Real Time

(a) Evolution of the current assessment of long-run growth
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(b) Selected vintages of long-run growth estimates using real-time data
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Note: The figure presents results from re-estimating the model using the vintage of data
available at each point in time from January 2000 to March 2015. The start of the estimation
sample is fixed at Q1:1947. Panel (a) plots the median real-time estimate of current long-run
growth over time. This is the locus traced by the end points of all vintages. The shaded
areas around the solid line represent the 68th and 90th percentiles. The dashed line is the
contemporaneous estimate of the historical average of real GDP growth. The diamonds are
the median response to the Philadelphia Fed Livingston Survey of Professional Forecasters
on the average growth rate for the next 10 years. Panel (b) displays the median estimate of
long-run GDP growth for various vintages of data (dashed gray lines). The estimate of the
latest vintage is shown as the solid thick line. Gray shaded areas represent NBER recessions
in both panels.
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the end of the Great Recession. From this time, the constant estimate shown in panel (a) is

always outside of the 90% posterior bands. There is a sharp reassessment of long-run growth

around July 2010, coinciding with the publication by the Bureau of Economic Analysis

of the annual revisions to the National Accounts, which each year incorporate previously

unavailable information for the previous three years. The revisions implied a substantial

downgrade, in particular, to the growth of consumption in the first year of the recovery,

from 2.5% to 1.6%, and instead allocated much of the growth in GDP during the recovery

to inventory accumulation.29 Reflecting the role of consumption as the most persistent and

forward looking component of GDP, the estimate of long-run growth is downgraded sharply.

Panel (b) shows how the 2010 revisions in fact trigger a re-interpretation of the years leading

to the Great Recession. With the revised information, the bulk of the slowdown in long-run

growth is now estimated to have occurred before the recession.30 From 2010 onward, the

model predicts a recovery that is extremely slow by historical standards. This is four years

before the structural break test detected a statistically significant decline.31 It is evident

from the preceding discussion that revisions to past data by the BEA are an important

source of changes to the long-run growth estimate in real time. Since the revision process is

not modeled explicitly within the DFM, the in-sample results of Section 4.3 do not take into

account the uncertainty stemming from future revisions. Interestingly, in the latest part of

the sample, the estimate of long-run growth has recovered slightly to about 2% but this has

been triggered by improvements in incoming data, rather than revisions to past vintages.

With regards to the SPF, it is noticeable that from 2003 to about 2010, the survey is

remarkably similar to the model, but since then, the SPF forecast has continued to drift

down only very slowly, standing at 2.5% as of mid-2015. It is noteworthy that, as pointed

out by Stanley Fischer in the speech quoted in the introduction, during that period both

29See Online Appendix I for additional figures on the National Accounts revisions during this period.
30Indeed, the (one-sided) filtered estimate based on the latest vintage, which ignores the effect of data

revisions, displays a more gradual pattern of decline (see Figure A.1 in Section A of the Online Appendix).
31A simpler specification that does not use consumption to inform the trend would detect the decline in

long-run growth one year later, with additional revisions to past GDP in July 2011.
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private and institutional forecasters systematically overestimated growth.

4.5 Implications for Nowcasting GDP

The standard DFM with constant long-run growth and constant volatility has been suc-

cessfully applied to produce current quarter nowcasts of GDP (see Banbura et al., 2010, for

a survey). Using our real-time US database, we carefully evaluate whether the introduc-

tion of time-varying long-run growth and SV into the DFM framework also improves the

performance of the model along this dimension. We find that over the evaluation window

2000-2015 the model is at least as accurate at point forecasting, and significantly better

at density forecasting than the benchmark DFM. We find that most of the improvement

in density forecasting comes from correctly assessing the center and the right tail of the

distribution, implying that the time-invariant DFM is assigning excessive probability to a

strong recovery. In an evaluation sub-sample spanning the post-recession period, the relative

performance of both point and density forecasts improves substantially, coinciding with the

significant downward revision of the model’s assessment of long-run growth. In fact, ignor-

ing the variation in long-run GDP growth would have resulted in being on average around

1 percentage point too optimistic from 2009 to 2015.32

To sum up, the addition of the time-varying components not only provides a tool for

decision-makers to update their knowledge about the state of long-run growth in real time.

It also brings about a substantial improvement in short-run forecasting performance when

the trend is shifting, without worsening the forecasts when the latter is relatively stable.

The proposed model therefore provides a robust and timely methodology to track GDP

when long-run growth is uncertain.

32Online Appendix H provides the full details of the forecast evaluation exercise.
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4.6 Inspecting the Role of Data Set Size and Composition

In this paper we argue that the rich multivariate framework of a DFM will facilitate

the extraction of the long-run growth component of GDP. The DFM will exploit the cross-

sectional dimension, and not just the time series dimension in separating cycle from trend. It

is interesting to quantify the advantage that the DFM provides over traditional trend-cycle

decompositions, and to investigate the robustness of our main conclusions to alternative

datasets of varying size and composition. In order to do so, we consider (1) a bivariate model

with GDP and unemployment only (labeled “Okun”), (2) an intermediate model with GDP

and the four additional variables often included in the construction of coincident indicators,

see Mariano and Murasawa (2003) and Stock and Watson (1989) (labeled “MM03”), (3) our

“Baseline” specification with 28 variables, and (4) an “Extended” model that uses disaggre-

gated data for many of the headline series included in the baseline specification, totaling 155

variables.33 Moreover, in order to investigate the gains associated with imposing additional

structure to long-run GDP growth, for the last two specifications we also consider a version

of the model that does not impose common long-run growth in GDP and consumption.

The top panel of Table 2 reports the mean point-estimates for each specification over

selected subsamples.34 In all cases, the results are consistent with a decline in the long-

run growth rate in the last part of the sample. Quantitatively, most specifications are

very close to the baseline, with the specifications that impose common long-run growth in

GDP and consumption finding an earlier and sharper decline. The exception is the “Okun”

specification which instead estimates a smaller increase in the mid 1990s as well as a larger

33As we argue in Section 4.1, the introduction of a large number of disaggregated series, even if related to
real activity, is likely to lead to model misspecification whenever the sectoral data are not contemporaneously
related. For the extended specification, we consider a solution to this problem which allows to maintain the
parsimonious one factor structure. By extending the model to include lags of the factor in the observation
equation, each variable can display heterogeneous responses to the common factor, and correlation between
idiosyncratic components is reduced. Given that the extended model is heavily parameterized, we follow
D’Agostino et al. (2015) in choosing priors that shrink the model towards the contemporaneous-only spec-
ification, which is nested in the extended case. Full details and the composition of the data set and the
changes to the estimation in case of the extended model are provided in Online Appendix J.

34See Figure J.1 in Online Appendix J for a comparison of the results of each alternative specification
with the baseline results over the entire sample.
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decline in long-run growth in the past decade. It is noteworthy that the mean estimate of

the extended specification is very close to that of the baseline.

Table 2:
Comparison of results for alternative data sets and specifications

Baseline Extended
Okun MM03 GDP only GDP + C GDP only GDP + C

Long-run growth

1947-1972 3.9 3.5 3.6 3.8 3.6 3.9
1973-1995 3.2 3.4 3.1 3.1 3.2 3.2
1996-2007 2.6 3.2 3.1 3.1 3.0 3.1
2008-2015 1.6 2.5 2.4 1.8 2.2 1.7
End of Sample 1.3 2.4 2.3 2.0 2.1 2.0

Uncertainty: Long run
Filtered 0.82 0.63 0.64 0.56 0.78 0.63
Smoothed 0.44 0.36 0.37 0.35 0.44 0.39

Uncertainty: Cycle
Filtered 2.08 1.47 0.79 0.76 0.23 0.23
Smoothed 1.89 1.32 0.62 0.60 0.25 0.25

Notes: Each column presents the estimation results corresponding to the alternative models
(data sets) considered in this section. The upper panel displays the posterior means of
the long-run growth rate of real GDP, over selected subsamples. In the lower panel, the
posterior uncertainty corresponding to both the long-run growth rate of real GDP, as well
as the common factor are displayed. The uncertainty is calculated as an average over the
entire sample.

The lower panel of Table 2 instead investigates the uncertainty around the mean esti-

mates. The uncertainty around the long-run growth estimate declines as we move from the

bivariate to the multivariate specifications, with most of the reduction happening once a

handful of variables are included. On the other hand, when the panel is extended to include

a large number of disaggregated series, the uncertainty increases.35 While including a few

35We conjecture that as many more variables are added, the fit of the common factor to the cyclical
component of GDP worsens. As a consequence, some cyclical variation of GDP spills over to the estimate
of the long-run component. The uncertainty around the common factor, on the other hand, continues to
decline.
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key series, such as the ones in the specification of Mariano and Murasawa (2003) seems to

already achieve the bulk of the reduction in uncertainty, it should be taken into account

that those variables are available only with a relatively long publication lag, and subject to

considerable revisions over time. Our proposed strategy of using an intermediate number

of indicators, including the more timely and accurate surveys, is likely to lead to more sat-

isfactory results in a real-time setting. Furthermore, the inclusion of the surveys is helpful

in identifying the long-run growth rate, as those variables do not display a time-varying

long-run mean by construction.

Overall this exercise highlights that the finding of a substantial decline in the long-run

growth rate is confirmed across different specifications that use data sets of varying size

and composition. The baseline specification, which uses an intermediate number of series

including both hard data and surveys, leads to the lowest uncertainty around the long-run

growth estimate, supporting the baseline choice of data set size and composition proposed

in Section 4.1. Our results have important implications for trend-cycle decompositions of

output, which usually include only a few cyclical indicators, generally inflation or variables

that are direct inputs to the production function (see e.g. Gordon, 2014a or Reifschneider

et al., 2013). As we show, greater precision of the trend component can be achieved by

exploiting the common cyclical features of additional macroeconomic variables.36

5 Decomposing Movements in Long-Run Growth

In this section, we show how our model can be used to decompose the long-run growth

rate of output into long-run movements in labor productivity and labor input. By doing

this, we exploit the ability of the model to filter away cyclical variation and idiosyncratic

noise and obtain clean estimates of underlying long-run trends. We see this exercise as a

step towards giving an economically more meaningful interpretation to the movements in

36Basistha and Startz (2008) make a similar point, arguing that the inclusion of indicators that are
informative about common cycles can help reduce the uncertainty around Kalman filter estimates of the
long-run rate of unemployment (NAIRU).
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long-run real GDP growth detected by our model.

GDP growth is by identity the sum of growth in output per hour and growth in total

hours worked. It is therefore possible to split the long-run growth trend in our model into

two orthogonal components such that this identity is satisfied in the long run. Here we make

use of our flexible definition of ct in equation (2). In particular, ordering the growth rates

of real GDP, real consumption and total hours as the first three variables in yt, we define

at =

[
zt
ht

]
, B =

1 1

1 1

0 1

 , (10)

so that the model is specified with two time-varying components, the first of which loads

output and consumption but not hours, and the second loads all three series. The first

component is then by construction the long-run growth rate of labor productivity, while the

second one captures low-frequency movements in labor input independent of productivity.37

Given the relation in (10), the two components add up to the time-varying intercept in the

baseline specification, i.e. gt = zt + ht.
38 It follows from standard growth theory that our

estimate of the long-run growth rate of labor productivity will capture both technological

factors and other factors, such as capital deepening and labor quality.39

Figure 4 presents the results of the decomposition exercise for the US. Panel (a) plots

the median posterior estimate of long-run real GDP growth and its labor productivity and

total hours components. The posterior bands for long-run real GDP growth are included.

37zt and ht jointly follow random walks with diagonal covariance matrix as defined by equation (7).
Restricting the covariance matrix is not necessary for estimation, but imposing it allows us to interpret the
innovations to the trends as exogenous shocks to the long-run growth rates of the variables. The hours
trend is therefore interpreted as those low-frequency movements in hours which are uncorrelated with labor
productivity. Allowing for a full covariance matrix would yield trends that are linear combinations of the
current ones, but would lack a clear economic interpretation.

38Since zt and ht are independent and add up to gt, we set the prior on the scale of their variances to
half of the one set in Section 4.2 on gt. In addition, note that the cyclical movement in labor productivity
is given by (1− λ3)ft.

39Further decomposing zt into technology and non-technology movements requires additional information
to separately identify these components. One possibility, which we explore in Online Appendix K, is to use
an independent measure of TFP to isolate technological factors. Note, however, that reliable data on capital
input, labor quality, or estimates of TFP are not available in real time, making the focus on long-run labor
productivity more appealing in a real-time setting.
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Figure 4: Decomposition of Long-run US Output Growth

(a) Posterior median estimates of decomposition
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Note: Panel (a) plots the posterior median (solid black), together with the 68% and 90%
(doted and dashed gray) posterior credible intervals of long-run GDP growth and the pos-
terior median of both long-run labor productivity growth and long-run total hours growth
(crossed markers and circled markers). Panel (b) plots the filtered estimates of these two
components, i.e. ẑt|t and ĥt|t, since 1990. For comparison, the corresponding forecasts from
the SPF are plotted (diamonds and squares). The SPF forecast for total hours is obtained
as the difference between the forecasts for real GDP and labor productivity.
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The time series evolution conforms very closely to the narrative of Fernald (2014), with a

pronounced boom in labor productivity in the mid-1990’s and a subsequent fall in the 2000’s

clearly visible. The decline in the 2000’s is relatively sudden while the 1970’s slowdown

appears as a more gradual phenomenon starting in the late 1960’s. Furthermore, the results

reveal that during the 1970’s and 1980’s the impact of the productivity slowdown on out-

put growth was partly masked by a secular increase in hours, probably reflecting increases

in the working-age population as well as labor force participation (see e.g. Goldin, 2006).

Focusing on the period since 2000, labor productivity accounts for almost the entire de-

cline.40 This contrasts explanations by which slow labor force growth has been a drag on

GDP growth. When taking away the cyclical component of hours and focusing solely on its

long-run component, the contribution of hours has, if anything, accelerated since the Great

Recession. Panel (b) presents the filtered estimates of the two components, i.e. the output

of the Kalman Filter which uses data only up to each point in time. For comparison, the cor-

responding SPF forecasts are included. Most notably, this plot reveals that starting around

2005 a relatively sharp revision to labor productivity drives the decline in long-run output

growth.41 Interestingly, the professional forecasters have been very slow in incorporating

the productivity slowdown into their long-run forecasts. This delay explains their persistent

overestimation of GDP growth since the recession.

It is interesting to compare the results of our decomposition exercise to similar approaches

in the literature, in particular Gordon (2010, 2014a) and Reifschneider et al. (2013). Like

us, they specify a state space model with a common cyclical component and use the ‘output

identity’ to decompose the long-run growth rate of GDP into underlying drivers. A key

difference resides in the Bayesian estimation of the model, which enables us to impose a

conservative prior on the variance of the long-run growth component that helps avoiding

40In Online Appendix K we extend the analysis to decompose the labor productivity trend into long-run
TFP and non-technological forces. We find that TFP accounts for virtually all of the slowdown.

41In an additional figure, provided in Section A of the Online Appendix, we plot 5,000 draws from the joint
posterior distribution of the variances of the innovations to the labor productivity and hours components.
This analysis confirms the conclusion from the discussion here that changes in labor productivity, rather
than in labor input, are the key driver of low frequency movements in real GDP growth.
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over-fitting the data. Furthermore, the inclusion of SV in the cyclical component helps

to prevent unusually large cyclical movements from contaminating the long-run estimate.

Another important difference is that we use a larger amount of information, including key

cyclical indicators like industrial production, sales, and business surveys, which are generally

not included in a production function approach. This allows us to retrieve a timely and

precise estimate of the cyclical component and, as a consequence, to reduce the uncertainty

that is inherent to any trend-cycle decomposition of the data, as discussed in Section 4.6. As

a result, we obtain a substantially less pessimistic estimate of the long-run growth of GDP

than these studies in the latest part of the sample. For instance, Gordon (2014a) reports

a long-run GDP growth estimate below 1% for the end of the sample, whereas our median

estimate stands at around 2%.42

5.1 International Evidence

To gain an international perspective on our results, we estimate the DFM for the other G7

economies and perform the decomposition exercise for each of them.43 The median posterior

estimates of the labor productivity and labor input trends are displayed in Figure 5. Labor

productivity, displayed in Panel (a), plays again the key role in determining movements

in long-run growth. In the Western European economies and Japan, the elevated growth

rates of labor productivity prior to the 1970’s reflect the rebuilding of the capital stock from

the destruction from World War II, and ended as these economies converged towards US

levels of output per capita. The labor productivity profile of Canada broadly follows that of

the US, with a slowdown in the 1970’s and a temporary mild boom during the late 1990’s.

42The results for a bivariate model of GDP and unemployment, which we have discussed in Section 4.6
show that the current long-run growth estimate is 1.3%, close to Gordon (2014a).

43Details on the specific data series used for each country are available in Online Appendix E. For hours,
we again follow the methodology of Ohanian and Raffo (2012). In the particular case of the UK, the
quarterly series for hours displays a drastic change in its stochastic properties in the early 1990’s owing
to a methodological change in the construction by the ONS, as confirmed by the ONS LFS manual. We
address this issue by using directly the annual series from the TED, which requires an appropriate extension
of equation (9) to annual variables (see Banbura et al. 2012). To avoid weak identification of ht for the UK,
we truncate our prior on its variance to discard values which are larger than twice the maximum posterior
draw of the case of the other countries.
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Interestingly, this acceleration in the 1990’s did not occur in Western Europe and Japan.44

The UK displays a decline in labor productivity similar to the US. This “productivity puzzle”

has been debated extensively in the UK (see e.g. Pessoa and Van Reenen, 2014). It is

interesting to note that the two countries which experienced a more severe financial crisis,

the US and the UK, appear to be the ones with greatest declines in productivity since the

early 2000’s, similar to the evidence documented in Reinhart and Rogoff (2009).

Panel (b) displays the movements in long-run hours worked identified by equation (10).

The contribution of this component to overall long-run output growth varies considerably

across countries. However, within each country it is more stable over time than the pro-

ductivity component, which is in line with our findings for the US. Indeed, the extracted

long-run trend in total hours includes various potentially offsetting forces that can lead to

changes in long-run output growth. In any case, the results of our decomposition exercise

indicate that after using the DFM to remove business-cycle variation in hours and output,

the decline in long-run GDP growth that has been observed in the advanced economies since

the early 2000’s is entirely accounted for by a decline in the labor productivity trend. Finally,

it is interesting to note that for the countries in the sample long-run productivity growth

appears to converge in the cross section, while there is no evidence of convergence in the

long-run growth of hours.45

44On the lost decade in Japan, see Hayashi and Prescott (2002). Gordon (2004) examines the absence of
the IT boom in Europe.

45Similar evidence for emerging economies has been recently presented by Pritchett and Summers (2014).
Their evidence refers to convergence of overall GDP growth rates, whereas ours indicates that convergence
in productivity growth appears to be the dominant source of convergence.
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Figure 5: Decomposition for Other Advanced Economies

(a) Long-run Labor Productivity
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Note: Panel (a) displays the posterior median of long-run labor productivity across advanced
economies. Panel (b) plots the corresponding estimates of long-run total hours worked. In
both panels, ’Euro Area’ represents a weighted average of Germany, Italy and France.
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6 Concluding Remarks

The sluggish recovery from the Great Recession has raised the question whether the long-

run growth rate of US real GDP is now lower than it has been on average over the postwar

period. We have presented a dynamic factor model that allows for both changes in long-

run GDP growth and stochastic volatility. Estimating the model with Bayesian methods,

we provide evidence that long-run growth of US GDP displays a gradual decline after the

turn of the century, moving from its peak of 3.5% to about 2% in 2015. Using real-time

vintages of data we demonstrate the model’s ability to track GDP in a timely and reliable

manner. By the summer of 2010 the model would have concluded that a significant decline

in long-run growth was behind the slow recovery, therefore substantially improving the real-

time tracking of GDP by explicitly taking into account the uncertainty surrounding long-run

growth. Finally, we discuss the drivers of movements in long-run output growth through the

lens of our model by decomposing it into the long-run growth rates of labor productivity and

labor input. Using data for both the US and other advanced economies our model points to

a global slowdown in labor productivity as the main driver of weak growth in recent years,

extending the narrative of Fernald (2014) to other economies. Studying the deep causes of

the secular decline in growth is an important priority for future research.
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A Additional Figures

Figure A.1: Filtered estimate of long-run growth

1990 1995 2000 2005 2010 2015
0

1

2

3

4

5

Filtered long-run growth estimate Livingston Survey

Note: The solid red line is the filtered estimate of the long-run GDP growth rate, ĝt|t, using
the vintage of National Accounts available as of March 2015. The solid and dotted blue lines
capture the corresponding 68% and 90% posterior bands. The black diamonds represent
the real-time mean forecast from the Livingston Survey of Professional Forecasters of the
average GDP growth rate for the subsequent 10 years.

3



Figure A.2: Stochastic Volatility of Selected Idiosyncratic Components
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Note: Each panel presents the median (solid red), the 68% and the 90% (solid and dashed
blue) posterior credible intervals of the volatility of the idiosyncratic component of selected
variables. Shaded areas represent NBER recessions. Similar charts for other variables are
available upon request.
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Figure A.3: Joint Posterior Distribution of Growth Component Innovation Variances
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Note: The figure plots 5,000 draws of the joint posterior distribution of the variances of
innovations to the labor productivity and hours component. The dashed red line is the
45◦line. Under the equal-variance prior the draws would be equally distributed above and
below this line. The fact that the bulk of draws lie above indicates that changes in long-run
labor productivity drive the variation in long-run output.
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B Full Results of Structural Break Tests

B.1 Nyblom Test

Table B.1 reports the result for the Nyblom (1989) test applied to US real GDP growth,
as described in Hansen (1992). The sample starts is 1947:Q2. The specification is yt =
µ+ρ1yt−1+ρ2yt−1+σεt, where yt is real GDP growth. For each parameter of the specification,
the null hypothesis is that the respective parameter is constant.

Table B.1:
Test Results of Nyblom Test

Lc
AR(1) AR(2)

µ 0.518* 0.473*
ρ1 0.367 0.331
ρ2 0.094
σ2 0.843*** 0.838***

Joint Lc 2.145*** 2.294***

Notes: Results are obtained using Nyblom’s L test as described in Hansen (1992). *, ** and
*** indicate significance at the 10%, 5% and 1% level.
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B.2 Bai and Perron Test

Table B.2 reports the result for the Bai and Perron (1998) test applied to US real GDP
growth for the sample starting in 1947:Q2. We apply the SupFT (k) test for the null hy-
pothesis of no break against the alternatives of k = 1, 2, or 3 breaks. Secondly, the test
SupFT (k + 1|k) tests the null of k breaks against the alternative of k + 1 breaks. Finally,
the Udmax statistic tests the null of absence of break against the alternative of an unknown
number of breaks. The null hypothesis of no breaks is rejected against the alternative of
one break at the 10% level. The null is not rejected against the alternative of two or three
breaks. Furthermore, the null hypothesis of one break against two breaks, or the null of only
two against three breaks is not rejected. The final test confirms the conclusion that there
is some evidence in favor of at least one break, with the null rejected against an unknown
number of breaks at the 10% level. The most likely break is identified to have happened in
the second quarter of 2000.

Table B.2:
Test Results of Bai-Perron Test

Sample 1947-2015
SupFT (k)

k = 1 8.379*
[2000:Q2]

k = 2 4.194
[1968:Q2; 2000:Q2]

k = 3 4.337
[1969:Q1; 1982:Q4; 2000:Q2]

SupFT (k|k − 1)
k = 2 1.109
k = 3 2.398

Udmax 8.379*

Note: Results are obtained using the Bai and Perron (1998) methodology. Dates in square
brackets are the most likely break date(s) for each of the specifications. * indicates signifi-
cance at the 10% level.
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C Monte Carlo Evidence

C.1 Setup for Monte Carlo simulations

To assess the performance of our model in the presence of potentially relevant types of
misspecification, we carry out a variety of Monte Carlo experiments. In each experiment,
we simulate a large number of data sets which are generated from the model under known
parameter values, and estimate our model repeatedly over these data sets. This appendix
presents the results for two sets of such experiments, which are designed to explore the
robustness of crucial assumptions made in the paper.

• In Section C.2 we examine whether the random walk assumption for the time-varying
parameters is robust to a different type of structural change. In particular, we verify
how the model performs if the underlying long-run growth rate of GDP features one
or multiple discrete breaks rather than gradual change. We also estimate our baseline
model on data which is generated with a constant instead of a time-varying long-run
growth rate of real GDP growth. Furthermore, we repeat this type of experiment for
discrete breaks rather than gradual change in the volatilities of both the common factor
and the idiosyncratic terms.

• In Section C.3 we explore the robustness of our model to the presence of (unmodeled)
change in the long-run growth rate of other series. We entertain the possibility that
such unmodeled trends are either independent of the change in the long-run growth
real GDP growth or that some series share the trend of GDP. We also verify robustness
to both of these types of misspecification simultaneously.

While our simulations feature selected types of misspecification, we aim to ensure a realistic
environment for the correctly specified parts of the model. In particular, we set the values of
the parameters to their estimated posterior median of the US results. We then take draws
for the random disturbances and generate a sample of the vector of 28 observables using
equations (1) to (7), and generate 800 periods of data, which corresponds to the monthly
sample size in our US application.1 The four quarterly series are generated by simulating
the underlying monthly series and then introducing missing observations by (backwards)
applying the polynomial in equation (9). We then estimate the model using the settings
described in the paper. The number of simulations (repeatedly drawn samples) per given
experiment is set to 100.2

1While we argue in the paper that the random walk assumption for the estimation of the time-varying
parameters is innocuous, it can be problematic to simulate data from parameters that follow random walks.
Although we would like the parameters to drift in a non-stationary fashion, i.e. to generate realistic patterns
of time-varying volatility, data sets generated from “explosive” processes feature unrealistic properties. To
address this issue in the Monte Carlo simulations we discard and re-generate random walks when they drift
across a fix threshold. For example, we do not allow the range of (demeaned) time-varying intercept of a
given series to exceed the range of its cyclical component.

2In certain cases, convergence of the algorithm takes longer in the presence of misspecification, which
required us to increase the number of draws of the Gibbs sampler, and thus limited the amount of repetitions
that was feasible for a given experiment.
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C.2 Results: Sensitivity of random walk specification

The goal of this first set of Monte Carlo experiments is to explore the sensitivity of our
modeling choice with respect to the random walk specification of the time-varying parame-
ters. The details about how we justify this modeling assumption can be found in Section 3.1
of the paper. In particular, we aim here to verify whether the model is robust in a context in
which there are changes in the long-run growth rate of real GDP growth and in the volatility
of business cycles, but these changes occur as discrete breaks rather then as gradual change.
Figures C.1 to C.4 present the results of four Monte Carlo experiments.

In the first experiment, the simulated counterpart of real GDP growth features a mean
growth rate that is constant but subject to a level shift in the middle of the sample. In
Figure C.1, panels (a) and (b), we plot the actual growth rate underlying the data-generating
process together with one and two standard deviation percentiles of the 100 simulations of
the posterior median, both for the filtered and smoothed estimate. It is reassuring to see that
the random walk process “learns” relatively quickly about the underlying change, even in
the case of a discrete jump. Panel (c) displays the true, together with the posterior estimate
of the common factor for one of the 100 Monte Carlo draws. Panel (d) provides a scatter
plot of the true vs. estimated stochastic volatilities. Both pictures show that the models
performs well at capturing the simulated objects.

In the second experiment, we repeat the same exercise in the presence of two discrete
breaks in the real GDP growth rate. The results are visible in Figure C.2, which tells a very
similar story to the first experiment. We omit panels for factor and the stochastic volatility
estimates, as they are very similar to the first experiment.

In the third experiment, we verify the consequences of estimating our model in an in
environment in which the parameters which we specify as time-varying are in fact constant
in the data-generating process. The results, displayed in Figure C.3, confirm that the random
walk assumption appears to be entirely innocuous in this setting. Both the long-run GDP
growth rate (smoothed and filtered), as well as the volatility of the factor are estimated to
be constant, with relatively high precision. In addition, similar to the first experiment, the
estimate of the common factor is very precise.

Finally, in the fourth experiment, we again keep the long-run growth rate of real GDP
constant but this time introduce a discrete shift in the volatilities of both the common factor
and the idiosyncratic terms of all series in the middle of generated data sample. Reassuringly,
the shift in the volatilities is well captures in the estimation and does not spill over to the
estimate of the long-run growth rate of real GDP.

In conclusion from these experiments, the random walk assumption appears to be flexible
enough to accommodate structural change that occurs in discrete steps rather than gradually.
This underpins our conclusions about the apparent gradual changes in the long-run growth
of the US economy described in the paper.
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Figure C.1: Simulation Results I

Data-generating process (DGP) with one discrete break in long-run real GDP growth
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Note: The DGP features a discrete break in the trend of GDP growth occurring in the middle of the

sample, as well as stochastic volatility. The sample size is n = 28 and T = 800, which mimics our

US data set. The estimation procedure is the fully specified model as defined by equations (1)-(7)

in the text. We carry out 100 simulations drawing from the DGP. Panel (a) presents the long-run

growth component as estimated by the Kalman filter, plotted against the actual long-run growth

rate generated from the DGP. The corresponding figure for the smoothed estimate is given in panel

(b). In both panels, the median (black) as well the 68th (solid) and 90th (dashed) percentile of the

100 simulated outcomes are shown in blue/purple. Panel (c) displays the factor generated by the

the DGP (red) and its smoothed estimate (blue) for one draw. Panel (d) provides evidence on the

accuracy of the estimation of the SV of the idiosyncratic terms, by plotting the volatilities from

the DGP against the estimates for the 24 monthly indicators. Both are normalized by subtracting

the average volatility.
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Figure C.2: Simulation Results II

Data-generating process (DGP) with two discrete breaks in in long-run real GDP growth
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Note: The simulation setup is equivalent to the one in Figure C.1 but features two discrete breaks

in the trend at 1/3 and 2/3 of the sample. Again, we show the filtered as well as the smoothed trend

median estimates and the corresponding 68th and 90th percentiles of the 100 simulated estimates

of these objects. Panels (c) and (d) are omitted as they are very similar to Figure C.1.
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Figure C.3: Simulation Results III

Data-generating process (DGP) without in changes long-run real GDP growth and without
SV

(a) True vs. Estimated Trend (Filtered)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

(b) True vs. Estimated Trend (Smoothed)
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(c) True vs. Estimated Factor
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(d) True vs. Estimated Volatility of Factor
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Note: The DGP is the baseline model without trend in GDP growth and without stochastic volatil-

ity. The estimation procedure is the fully specified model as explained in the description of Figure

C.1. Again, we plot the filtered and smoothed median estimates of the long-run growth rate with

68th and 90th percentiles of the 100 simulated estimates in panels (a) and (b). Panel (c) presents

a comparison of the estimated factor and its DGP counterpart for one Monte Carlo draw. Panel

(d) in similar to (b), but for the volatility of the common factor.
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Figure C.4: Simulation Results IV

Data-generating process (DGP) with discrete break in volatility

(a) True vs. Estimated Trend (Smoothed)
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Note: The DGP does not feature any changes in the trend of GDP growth, but one discrete break

in the volatility of the common factor. As in Figures C.1-C.3, the estimation procedure is based

on the fully specified mode. Panel (a) displays the smoothed posterior median estimate of the

trend component of GDP growth, with 68th and 90th percentiles of the 100 simulations shown as

solid and dashed blue lines, respectively. Panel (b) displays the posterior median estimate of the

volatility of the common factor (black), with the corresponding percentiles.
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C.3 Results: Sensitivity to confounding time-variation

Our model can flexibly accommodate time-varying intercepts in all or a subset of the series
contained in our data panel. Given our interest in tracking real GDP growth, we restrict our
baseline model to feature a trend in GDP only (shared by consumption) and argue that such
unmodeled time-variation is picked up by the idiosyncratic components, which we allow to
be persistent. Details about this discussion are contained in Section 3.2 of the paper. The
goal of this second set of Monte Carlo experiments is to verify how robust our model is in
a setting where time-varying intercepts are indeed present in the data-generating process
but not modeled explicitly in the estimation. Figures C.5 to C.7 present the results of three
Monte Carlo experiments in which such “confounding trends” are added when generating
the data.3

In the first experiment, the misspecification arises from the fact that our model explicitly
specifies a time-varying mean in the GDP equation only, while the data is generated such
that the first 18 series of the panel all feature independent non-stationary means.4 Figure
C.5 presents the estimation results in this setup. Panel (a) shows the percentiles of the
deviations of the estimated from the actual real GDP growth rates over the 100 simulations
(repeated draws from the DGP). The percentiles are centered relatively tightly around zero,
meaning that the trend estimates with 68 and 90% smallest deviations are relatively similar
to the original trend process. To illustrate this further, panels (b), (c) and (d) display more
detailed results for one of the 100 Monte Carlo simulations, labeled “Median Simulation”.
This is selected by ordering the outcomes of all repeated samples by the distance of squared
deviation of the estimated from the simulated GDP trend and then selecting the median.
This essentially means that 49% of the simulations had larger, and 50% smaller deviations
than the simulation displayed. The panels plot actual against estimated (black/red) long-run
real GDP growth rate, common factor and factor volatility, respectively. In the case of the
long-run growth rate the posterior credible intervals are added in blue. These results reveal
that in a typical (median) outcome for this type of specification, the model performs well
at capturing these objects. Most importantly, the “true” long-run growth rate is contained
within the posterior bands throughout the entire estimation sample.

In the second experiment, the data-generating process features a single time-varying mean
which is present in the first 6 series, whereas we still only specify it in the first series for
the estimation.5 The results for this experiment are shown in Figure C.6. The panels here
are similar to Figure C.5. While the deviations in panel (a) are slightly larger than for the
previous figure, indicating that common unmodeled trends are somewhat more challenging
to pick up than independent ones, the overall message remains the qualitatively similar.
In particular, the results for the “Median Experiment”, displayed in panels (b) to (d), are
reassuring in that the estimate tracks their data counterpart closely.

3For simplicity we assume that the estimated model in this section is the one with a trend in GDP only,
i.e. B = 1.

4Formally, in the DGP dim(at) = 18 and B = I18, while the model for estimation is specified by at = gt
and B = 1. We assume that the remaining 10 of the 28 series are stationary, which mimics the presence of
the surveys in our data set.

5In our notation this means that in the DGP we have at = gt and B = 16×1, while the model for
estimation is specified by at = gt and B = 1. We choose 6 series so that both quarterly and monthly
variables are affected by the misspecification.

14



The third experiment introduces both types of misspecification simultaneously, i.e. inde-
pendent time-varying means in series 1-18 and an additional shared time-varying component
in series 1-6. The results are presented in Figure C.7. The take-aways are similar to the
previous figures, even in the presence of this heavy type of misspecification.

Overall, these simulation experiments confirm our intuition that the estimate of the time-
varying mean of interest is not affected by low frequency movements present in other series
that are not explicitly modeled. Despite the extremely unfavorable assumption of a large
amount of additional time-variation, the long-run growth rate of real GDP is tracked very
well in all settings considered.
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Figure C.5: Simulation Results V

Data-generating process (DGP) with independent unmodeled trends in other series

(a) True vs. Est. Trend - Deviation Per-
centiles
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(b) True vs. Est. Trend (Median Simula-
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(c) True vs. Est. Factor (Median Simula-
tion)
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(d) True vs. Est. Vol (Median Simulation)
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Note: The DGP features independent time-varying means in series 1-18. The sample size is n = 28

and T = 800, which mimics our US data set. The estimation procedure is the fully specified model

as defined by equations (1)-(7) in the text, with a time-varying mean only specified for the real

GDP growth equation. We carry out a Monte Carlo simulation with 100 samples repeatedly drawn

from the DGP. Panel (a) presents the median (red), as well as the 68 and 90% bands (blue) of the

deviation of the estimated long-run growth rate from its actual data counterpart over 100 simulated

outcomes. Panel (b) shows the true (black) together with the posterior median estimate (red) of the

long-run growth rate of real GDP. The 68% (solid blue) and 90% (dashed blue) posterior credible

intervals are also plotted. Panels (c) and (d) plot the median estimate (red) against true (black)

common factor and its stochastic volatility.
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Figure C.6: Simulation Results VI

Data-generating process (DGP) with shared unmodeled trends in other series

(a) True vs. Est. Trend - Deviation Per-
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(b) True vs. Est. Trend (Median Simula-
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(c) True vs. Est. Factor (Median Simula-
tion)
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(d) True vs. Est. Vol (Median Simulation)
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Note: The DGP features a common time-varying in series 1-6, while the estimation specifies this

stochastic trend only in the equation for real GDP growth. The rest of the setup of the simulations,

as well as the structure of the panels are similar to Figure C.5.
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Figure C.7: Simulation Results VII

Data-generating process (DGP) with both independent and shared unmodeled trends in
other series
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(c) True vs. Est. Factor (Median Simula-
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The DGP features both independent time-varying components in series 1-18 as well as a common

time-varying in series 1-6, while the estimation specifies a stochastic trend only in the equation for

real GDP growth. The rest of the setup of the simulations, as well as the structure of the panels

are similar to Figure C.5
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D Details on Estimation Procedure

D.1 Construction of the State Space System

For expositional clarity, we focus on the baseline case with B = 1 and at = at here, so
that m = r = 1. Recall that in our main specification we choose the order of the polynomials
in equations (3) and (4) to be p = 2 and q = 2, respectively. Let the n× 1 vector ỹt, which
contains nq de-meaned quarterly and nm de-meaned monthly variables (i.e. n = nq + nm),
be defined as

ỹt =



yq1,t
...

yqnq ,t

ym1,t − ρm1,1ym1,t−1 − ρm1,2ym1,t−2
...

ymnm,t − ρ
m
nm,1y

m
nm,t−1 − ρ

m
nm,2y

m
nm,t−2


,

so that the system is written out in terms of the quasi-differences of the monthly indicators.
Given this re-defined vector of observables, we cast our model into the following state space
form:

ỹt = HXt + η̃t, η̃t∼N(0, R̃t)

Xt = FXt−1 + et, et∼N(0,Qt)

where the state vector is defined as X′t = [at, . . . , at−4, ft, . . . , ft−4,u
q
t
′, . . . ,uqt−4

′]. Setting
λ1 = 1 for identification, the matrices of parameters H and F, are then constructed as
shown below:

H =

[
Ha

Hλq HuHλm

]
,

where the respective blocks of H are defined as

Ha =

[
1
3

2
3

1 2
3

1
3

0(n−1)×5

]
, Hλq =

[
1 λ2 ... λnq

]′ × [1/3 2/3 1 2/3 1/3
]
,

Hλm =

λnq+1 − λnq+1ρ
m
1,1 − λnq+1ρ

m
1,2 01×4

...
...

λn − λnρmnm,1 − λnρ
m
nm,2 01×4



Hu =

[
H̄u

0nm×5

]
, H̄u = 1nq×1 ×

[
1/3 2/3 1 2/3 1/3

]
,
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and

F =


F1 0 . . . 0
0 F2
... F2+1

...
...

. . . 0
0 . . . . . . 0 F2+nq

 ,

where the respective blocks of F are defined as

F1 =

[
1 01×4
I4 04×1

]
F2 =

[
φ1 φ2 01×3

I4 04×1

]
F2+j =

[
ρqj,1 ρqj,2 01×3

I4 04×1

]
for j = 1, ..., nq.

The error terms are denoted as

η̃t = [01×nq , η̃
m
t
′]′

et =
[
vat 04×1 εt 04×1 η1,t 04×1 . . . ηnq ,t 04×1

]′
,

with covariance matrices

R̃t =

[
0nq×nq 0nq×nm

0nm×nq Rt

]
,

where Rt = diag(σ2
ηm1,t
, . . . , σ2

ηmnm,t
) and

Qt = diag(ω2
a,01×4, σ

2
ε,t,01×4, σ

2
ηq1,t
,01×4, . . . , σ

2
ηqnq,t

,01×4).
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D.2 Details of the Gibbs Sampler

For ease of notation, we again restrict this description to the case of one time-varying
mean specified as m = r = 1, B = 1 and at = at. Let θ ≡ {λ,Φ,ρ, ωa, ωε, ωη1 , . . . , ωηn} be
a vector that collects the underlying parameters, where Φ and ρ contain the parameters for
factor and idiosyncratic components respectively. The model is estimated using a Markov
Chain Monte Carlo (MCMC) Gibbs sampling algorithm in which conditional draws of the
latent variables, {at, ft}Tt=1, the parameters, θ, and the stochastic volatilities, {σε,t, σηi,t}Tt=1

are obtained sequentially. The algorithm has a block structure composed of the following
steps.

0. Initialization

The model parameters are initialized at arbitrary starting values θ0, and so are the
sequences for the stochastic volatilities, {σ0

ε,t, σ
0
ηi,t
}Tt=1. Set j = 1.

1. Draw latent variables conditional on model parameters and SVs

Obtain a draw {ajt , f
j
t ,u

q
t}Tt=1 from p({at, ft}Tt=1|θj−1, {σ

j−1
ε,t , σ

j−1
ηi,t
}Tt=1,y).

This step of the algorithm uses the state space representation described above (Appendix
D.1), and produces a draw from the entire state vector Xt (which includes the long-run
growth components, at, the common factor, ft, and the idiosyncratic components of the
quarterly variables, uqt ) by means of a forward-filtering backward-smoothing algorithm, see
Carter and Kohn (1994) or Kim and Nelson (1999b). In particular, we adapt the algorithm
proposed by Bai and Wang (2015), which is robust to numerical inaccuracies, and extend it
to the case with mixed frequencies and missing data following Mariano and Murasawa (2003),
as explained in section 3.3. Like Bai and Wang (2015), we initialise the Kalman Filter step
from a normal distribution whose moments are independent of the model parameters, in
particular X0 ∼ N(0, 104I).

2. Draw the variance of the time-varying GDP growth component

Obtain a draw ω2,j
a from p(ω2

a|{a
j
t}Tt=1).

Taking the sample {ajt}Tt=1 drawn in the previous step as given, and posing an inverse-
gamma prior p(ω2

a) ∼ IG(Sa, va) the conditional posterior of ω2
a is also drawn inverse-gamma

distribution. As discussed in Section 4.2, we choose the scale Sa = 10−3 and degrees of
freedom va = 1 for our baseline specification.

3. Draw the autoregressive parameters of the factor VAR

Obtain a draw Φj from p(Φ|{f j−1t , σj−1ε,t }Tt=1).

Taking the sequences of the common factor {f j−1t }Tt=1 and its stochastic volatility
{σj−1ε,t }Tt=1 from previous steps as given, and posing a non-informative prior, the correspond-
ing conditional posterior is drawn from the Normal distribution, see, e.g. Kim and Nelson
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(1999b). In the more general case of more than one factor, this step would be equivalent to
drawing from the coefficients of a Bayesian VAR. Like Kim and Nelson (1999b), or Cogley
and Sargent (2005), we reject draws which imply autoregressive coefficients in the explosive
region.

4. Draw the factor loadings

Obtain a draw of λj from p(λ|ρj−1, {f j−1t , σj−1ηi,t
}Tt=1,y).

Conditional on the draw of the common factor {f j−1t }Tt=1, the measurement equations
reduce to n independent linear regressions with heteroskedastic and serially correlated resid-
uals. By conditioning on ρj−1 and σj−1ηi,t

, the loadings can be estimated using GLS and
non-informative priors. When necessary, we apply restrictions on the loadings using the for-
mulas provided by de Wind and Gambetti (2014), see Appendix D.3 for further information.

5. Draw the serial correlation coefficients of the idiosyncratic components

Obtain a draw of ρj from p(ρ|λj−1, {f j−1t , σj−1ηi,t
}Tt=1,y).

Taking the sequence of the common factor {f j−1t }Tt=1 and the loadings drawn in previ-
ous steps as given, the idiosyncratic components for the monthly variables can be obtained
as ui,t = yi,t − λj−1f j−1t . For the quarterly variables, a draw of the idiosyncratic compo-
nents has been obtained directly from Step 1. Given a sequence for the stochastic volatility
of the ith component, {σj−1ηi,t

}Tt=1, the residual is standardized to obtain an autoregression
with homoskedastic residuals whose conditional posterior can be drawn from the Normal
distribution as in step 2.3.

6. Draw the stochastic volatilities

Obtain a draw of {σjε,t}Tt=1 and {σjηi,t}
T
t=1 from p({σε,t}Tt=1|Φj−1, {f j−1t }Tt=1), and from

p({σηi,t}Tt=1|λj−1,ρj−1, {f
j−1
t }Tt=1,y) respectively.

Finally, we draw the stochastic volatilities of the innovations to the factor and the id-
iosyncratic components independently, using the algorithm proposed by Kim et al. (1998),
which uses a mixture of normal random variables to approximate the elements of the log-
variance. This is a more efficient alternative to the exact Metropolis-Hastings algorithm
previously proposed by Jacquier et al. (2002). For the general case in which there is more
than one factor, the volatilities of the factor VAR can be drawn jointly, see Primiceri (2005).

Increase j by 1, go to Step 2.1 and iterate until convergence is achieved.

D.3 Implementing linear restrictions on the factor loadings

To impose linear restrictions on the factor loadings λ in equation (1) of the paper, we
follow de Wind and Gambetti (2014). For linear restrictions of the form

Rλ = r (11)
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these authors consider the special case with r = 0 in equation (54) in the appendix to their
paper. For r 6= 0, this equation is amended as shown here. Let λu and λr denote the
unrestricted and restricted loading matrix, respectively. λr is then drawn from a posterior
distribution defined by (12) to (14):

λr ∼ N
(
λ
r
,Pr

λ

)
, (12)

where

λ
r

= λu −Pu
λR
′ (RPu

λR
′)
−1

(Rλu−r) (13)

Pr
λ = Pu

λ −Pu
λR
′ (RPu

λR
′)
−1

RPu
λ. (14)
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E Details on the Construction of the Data Base

E.1 US (Vintage) Data Base

For our US real-time forecasting evaluation, we consider data vintages since 11 January
2000 capturing the real activity variables listed in the text. For each vintage, the start of
the sample is set to January 1960, appending missing observations to any series which starts
after that date. All times series are obtained from one of these sources: (1) Archival Federal
Reserve Economic Data (ALFRED), (2) Bloomberg, (3) Haver Analytics. Table E.1 provides
details on each series, including the variable code corresponding to the different sources.

For several series, in particular Retail Sales, New Orders, Imports and Exports, only
vintages in nominal terms are available, but series for appropriate deflators are available from
Haver, and these are not subject to revisions. We therefore deflate them using, respectively,
CPI, PPI for Capital Equipment, and Imports and Exports price indices. Additionally, in
several occasions the series for New Orders, Personal Consumption, Vehicle Sales and Retail
Sales are subject to methodological changes and part of their history gets discontinued. In
this case, given our interest in using long samples for all series, we use older vintages to
splice the growth rates back to the earliest possible date.

For soft variables real-time data is not as readily available. The literature on real-
time forecasting has generally assumed that these series are unrevised, and therefore used
the latest available vintage. However while the underlying survey responses are indeed not
revised, the seasonal adjustment procedures applied to them do lead to important differences
between the series as was available at the time and the latest vintage. For this reason we use
seasonally un-adjusted data and re-apply the Census-X12 procedure in real time to obtain
a real-time seasonally adjusted version of the surveys. We follow the same procedure for
the initial unemployment claims series. We then use Bloomberg to obtain the exact date in
which each monthly data point was first published.
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Table E.1:
Detailed Description of Data Series

Frequ. Start
Date

Vintage
Start

Trans-
formation

Publ.
Lag

Data
Code

Real Gross Domestic
Product

Q Q2:1947 Dec 91 %QoQ
Ann

26 GDPC1(F)

Real Consumption (ex.
durables)

Q Q2:1947 Dec 91 %QoQ
Ann

26

Hours worked Q Q2:1948 Dec 91 %QoQ
Ann

28

Real Investment (incl.
durable cons.)

Q Q2:1947 Dec 91 %QoQ
Ann

26

Real Industrial
Production

M Jan 47 Jan 97 % MoM 15 INDPRO(F)

Real Manufacturers’
New Orders Nondefense
Capital Goods
Excluding Aircraft

M Mar 68 Mar 97 % MoM 25 NEWORDER(F)1

PPICPE(F)

Real Light Weight
Vehicle Sales

M Feb 67 Mar 97 % MoM 1 ALTSALES(F)2

TLVAR(H)

Real Personal Income
less Transfer Payments

M Feb 59 Dec 97 % MoM 27 DSPIC96(F)

Real Retail Sales Food
Services

M Feb 47 Jun 01 % MoM 15 RETAIL(F)

CPIAUCSL(F)

RRSFS(F)3

Real Exports of Goods M Feb 68 Jan 97 % MoM 35 BOPGEXP(F)4

C111CPX(H)

TMXA(H)

Real Imports of Goods M Feb 69 Jan 97 % MoM 35 BOPGIMP(F)4

C111CP(H)

TMMCA(H)

Building Permits M Feb 60 Aug 99 % MoM 19 PERMIT(F)

Housing Starts M Feb 59 Jul 70 % MoM 26 HOUST(F)

New Home Sales M Feb 63 Jul 99 % MoM 26 HSN1F(F)

Total Nonfarm Payroll
Employment
(Establishment Survey)

M Jan 47 May 55 % MoM 5 PAYEMS(F)

Civilian Employment
(Household Survey)

M Feb 48 Feb 61 % MoM 5 CE16OV(F)

Unemployed M Feb 48 Feb 61 % MoM 5 UNEMPLOY(F)

Initial Claims for UE M Feb 48 Jan 00* % MoM 4 LICM(H)

(Continues on next page)
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Detailed Description of Data Series (Continued)

Markit Manufacturing
PMI

M May 07 Jan 00* - -7 S111VPMM(H)5

H111VPMM(H)

ISM Manufacturing PMI M Jan 48 Jan 00* - 1 NMFBAI(H)

NMFNI(H)

NMFEI(H)

NMFVDI(H)6

ISM Non-manufacturing
PMI

M Jul 97 Jan 00* - 3 NAPMCN(H)

Conference Board:
Consumer Confidence

M Feb 68 Jan 00* Diff 12 M. -5 CCIN(H)

University of Michigan:
Consumer Sentiment

M May 60 Jan 00* Diff 12 M. -15 CSENT(H)5

CONSSENT(F)

Index(B)

Richmond Fed
Manufacturing Survey

M Nov 93 Jan 00* - -5 RIMSXN(H)

RIMNXN(H)

RIMLXN(H)6

Philadelphia Fed
Business Outlook

M May 68 Jan 00* - 0 BOCNOIN(H)

BOCNONN(H)

BOCSHNN(H)

BOCDTIN(H)

BOCNENN(H)6

Chicago PMI M Feb 67 Jan 00* - 0 PMCXPD(H)

PMCXNO(H)

PMCXI(H)

PMCXVD(H)6

NFIB: Small Business
Optimism Index

M Oct 75 Jan 00* Diff 12 M. 15 NFIBBN (H)

Empire State
Manufacturing Survey

M Jul 01 Jan 00* - -15 EMNHN(H)

EMSHN(H)

EMDHN(H)

EMDSN(H)

EMESN(H)6

Notes: The second column refers to the sampling frequency of the data, which can be quarterly
(Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, %
MoM refers to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. In the last column, (B) =
Bloomberg; (F) = FRED; (H) = Haver;
1) deflated using PPI for capital equipment; 2) for historical data not available in ALFRED
we used data coming from HAVER; 3) using deflated nominal series up to May 2001 and
real series afterwards; 4) nominal series from ALFRED and price indices from HAVER. For
historical data not available in ALFRED we used data coming from HAVER; 5) preliminary
series considered; 6) NSA subcomponents needed to compute the SA headline index. * Denotes
seasonally un-adjusted series which have been seasonally adjusted in real time.
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E.2 Data Base for Other G7 Economies

Table E.2:
Canada

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Industrial Production: Manuf., Mining, Util. M Jan-1960 % MoM
Manufacturing New Orders M Feb-1960 % MoM
Manufacturing Turnover M Feb-1960 % MoM
New Passenger Car Sales M Jan-1960 % MoM
Real Retail Sales M Feb-1970 % MoM
Construction: Dwellings Started M Feb-1960 % MoM
Residential Building Permits Auth. M Jan-1960 % MoM
Real Exports M Jan-1960 % MoM
Real Imports M Jan-1960 % MoM
Unemployment Ins.: Initial and Renewal Claims M Jan-1960 % MoM
Employment: Industrial Aggr. excl. Unclassified M Feb-1991 % MoM
Employment: Both Sexes, 15 Years and Over M Feb-1960 % MoM
Unemployment: Both Sexes, 15 Years and Over M Feb-1960 % MoM
Consumer Confidence Indicator M Jan-1981 Diff 12 M.
Ivey Purchasing Managers Index M Jan-2001 Level
ISM Manufacturing PMI M Jan-1960 Level
University of Michigan: Consumer Sentiment M May-1960 Diff 12 M.

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.
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Table E.3:
Germany

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Mfg Survey: Production: Future Tendency M Jan-1960 Level
Ifo Demand vs. Prev. Month: Manufact. M Jan-1961 Level
Ifo Business Expectations: All Sectors M Jan-1991 Level
Markit Manufacturing PMI M Apr-1996 Level
Markit Services PMI M Jun-1997 Level
Industrial Production M Jan-1960 % MoM
Manufacturing Turnover M Feb-1960 % MoM
Manufacturing Orders M Jan-1960 % MoM
New Truck Registrations M Feb-1963 % MoM
Total Unemployed M Feb-1962 % MoM
Total Domestic Employment M Feb-1981 % MoM
Job Vacancies M Feb-1960 % MoM
Retail Sales Volume excluding Motor Vehicles M Jan-1960 % MoM
Wholesale Vol. excl. Motor Veh. and Motorcycles M Feb-1994 % MoM
Real Exports of Goods M Feb-1970 % MoM
Real Imports of Goods M Feb-1970 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.
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Table E.4:
Japan

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
TANKAN All Industries: Actual Business Cond. Q Sep-1974 Diff 1 M.
Markit Manufacturing PMI M Oct-2001 Level
Small Business Sales Forecast M Dec-1974 Level
Small/Medium Business Survey M Apr-1976 Level
Consumer Confidence Index M Mar-1973 Level
Inventory to Sales Ratio M Jan-1978 Level
Industrial Production: Mining and Manufact. M Jan-1960 % MoM
Electric Power Consumed by Large Users M Feb-1960 % MoM
New Motor Vehicle Registration: Trucks, Total M Feb-1965 Diff 1 M.
New Motor Vehicle Reg: Passenger Cars M May-1968 % MoM
Real Retail Sales M Feb-1960 % MoM
Real Department Store Sales M Feb-1970 % MoM
Real Wholesale Sales: Total M Aug-1978 % MoM
Tertiary Industry Activity Index M Feb-1988 % MoM
Labor Force Survey: Total Unemployed M Jan-1960 % MoM
Overtime Hours / Total Hours (manufact.) M Feb-1990 % MoM
New Job Offers excl. New Graduates M Feb-1963 % MoM
Ratio of New Job Openings to Applications M Feb-1963 % MoM
Ratio of Active Job Openings and Active Job Appl. M Feb-1963 % MoM
Building Starts, Floor Area: Total M Feb-1965 % MoM
Housing Starts: New Construction M Feb-1960 % MoM
Real Exports M Feb-1960 % MoM
Real Imports M Feb-1960 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.
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Table E.5:
United Kingdom

Freq. Start Date Transformation

Real Gross Domestic Product Q Mar-1960 % QoQ Ann.
Dist. Trades: Total Vol. of Sales M Jul-1983 Level
Dist. Trades: Retail Vol. of Sales M Jul-1983 Leve
CBI Industrial Trends: Vol. of Output Next 3 M. M Feb-1975 Level
BoE Agents’ Survey: Cons. Services Turnover M Jul-1997 Level
Markit Manufacturing PMI M Jan-1992 Level
Markit Services PMI M Jul-1996 Level
Markit Construction PMI M Apr-1997 Level
GfK Consumer Confidence Barometer M Jan-1975 Diff 12 M.
Industrial Production: Manufacturing M Jan-1960 % MoM
Passenger Car Registrations M Jan-1960 % MoM
Retail Sales Volume: All Retail incl. Autom. Fuel M Jan-1960 % MoM
Index of Services: Total Service Industries M Feb-1997 % MoM
Registered Unemployment M Feb-1960 % MoM
Job Vacancies M Feb-1960 % MoM
LFS: Unemployed: Aged 16 and Over M Mar-1971 % MoM
LFS: Employment: Aged 16 and Over M Mar-1971 % MoM
Mortgage Loans Approved: All Lenders M May-1993 % MoM
Real Exports M Feb-1961 % MoM
Real Imports M Feb-1961 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.
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Table E.6:
France

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Industrial Production M Feb-1960 % MoM
Total Commercial Vehicle Registrations M Feb-1975 % MoM
Household Consumption Exp.: Durable Goods M Feb-1980 % MoM
Real Retail Sales M Feb-1975 % MoM
Passenger Cars M Feb-1960 % MoM
Job Vacancies M Feb-1989 % MoM
Registered Unemployment M Feb-1960 % MoM
Housing Permits M Feb-1960 % MoM
Housing Starts M Feb-1974 % MoM
Volume of Imports M Jan-1960 % MoM
Volume of Exports M Jan-1960 % MoM
Business Survey: Personal Prod. Expect. M Jun-1962 Level
Business Survey: Recent Output Changes M Jan-1966 Level
Household Survey: Household Conf. Indicator M Oct-1973 Diff 12 M.
BdF Bus. Survey: Production vs. Last M., Ind. M Jan-1976 Level
BdF Bus. Survey: Production Forecast, Ind. M Jan-1976 Level
BdF Bus. Survey: Total Orders vs. Last M., Ind. M Jan-1981 Level
BdF Bus. Survey: Activity vs. Last M., Services M Oct-2002 Level
BdF Bus. Survey: Activity Forecast, Services M Oct-2002 Level
Markit Manufacturing PMI M Apr-1998 Level
Markit Services PMI M May-1998 Level

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.

31



Table E.7:
Italy

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Markit Manufacturing PMI M Jun-1997 Level
Markit Services PMI: Business Activity M Jan-1998 Level
Production Future Tendency M Jan-1962 Level
ISTAT Services Survey: Orders, Next 3 M- M Jan-2003 Level
ISTAT Retail Trade Confidence Indicator M Jan-1990 Level
Industrial Production M Jan-1960 % MoM
Real Exports M Jan-1960 % MoM
Real Imports M Jan-1960 % MoM
Real Retail Sales M Feb-1990 % MoM
Passenger Car Registrations M Jan-1960 % MoM
Employed M Feb-2004 % MoM
Unemployed M Feb-1983 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be
quarterly (Q) or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized
growth rate, % MoM refers to (yt− yt−1)/yt−1 while Diff 12 M. refers to yt− yt−12. All series
were obtained from the Haver Analytics database.
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F Choice of Priors

As explained in the paper, we use non-informative priors for loadings and serial correlation
coefficients of factor and idiosyncratic components in order to aide comparability with the
previous literature, which has generally used classical estimation methods. With respect to
the choice of priors on the new parameters of our specification, namely ω2

a, ω
2
ε and ω2

η,i in
equations (5)-(7), we closely follow the related literature, in particular Cogley and Sargent
(2005) and Primiceri (2005), by setting relatively conservative priors, which shrink the model
towards the benchmark with no time-variation, but are still loose enough for the data to be
able to speak. In particular, in all the inverse-gamma (IG) distributions we set the number
of degrees of freedom to 1, the minimum required to make the prior distributions proper
while keeping the weight of the prior low. As to the choice of the scale parameter of the IG
distributions, it is worth pointing out that this does not parametrize time variation itself, but
rather incorporates a prior belief about the amount of time variation. To gain an intuition
about the prior on ω2

a, in Section 4.2 we note that the chosen value of 0.001 implies that over
a period of ten years the random walk process of the long-run growth rate is expected to
vary with a standard deviation of around 0.4 percentage points in annualized terms, which
we believe is a fairly conservative prior in terms of economic magnitudes. The choice of 10−4

for the prior on ω2
ε and ω2

η,i is similar to the approach of Primiceri (2005).
To shed some light on the robustness of our results to the choice of priors, in what follows

we explore the sensitivity of our main results to varying the tightness of the respective priors.
To summarize the most notable finding, we find that the data strongly drives the result of
time variation both in the long-run growth rate and the volatilies: a dogmatically large
amount of shrinkage is needed in order to make either of them disappear.

F.1 Robustness checks on prior choice

Prior on innovation variance to the time-varying long-run growth rate

In Figure F.1 we explore the sensitivity of our key results to the choice of the scale
parameter of the prior on the innovation variance to the time-varying long-run growth rate
of real GDP, ω2

a. Each panel plots our baseline estimate of gt, which has been obtained
with a prior scale of 10−3 (red/blue). We then successively compare this baseline estimate
with alternative estimates obtained when imposing both looser and tighter prior scales,
respectively (gray). Panel (a) of the figure reveals that with a prior implying a very large
variance the estimated trend is pinned down with relatively more uncertainty and evolves
in bumpy fashion, yet the qualitative pattern around the evolution of long-run growth, in
particular the recent slowdown, remains clearly visible. Panels (b) and (c) show that using
a ten times looser prior (0.01) and a hundred times tighter prior (10−5) than the one in our
baseline setting gives very similar results to ours. In the later case, the estimate is almost
identical. Finally, a dogmatically tight prior (10−9) is required to make variation in the
long-run growth rate disappear entirely, which is visible in Panel (d).
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Figure F.1: Comparison Across Different Prior Scales of ω2
α

(a) ω2
a = 0.1 (loose prior)
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(b) ω2
a = 0.01 (looser prior)
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(c) ω2
a = 10−5 (very tight prior)
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(d) ω2
a = 10−9 (extremely tight prior)
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Note: In each panel our baseline the median estimate of real GDP growth based on a scale
of 10−3 is presented (red), with corresponding 68% (solid blue) and the 90% (dashed blue)
posterior credible intervals. The corresponding estimates based an different prior scales are
superimposed in gray in each panel.

Prior on innovation variance to the SV

Figure F.2 presents the sensitivity of the results to the choice of the scale parameter
of the prior on the innovation variance to the SV in both the common factor and the
idiosyncratic components. Similar to Figure F.1 we compare our baseline estimates
(red/blue), where we set ω2

ε = ω2
η,i = 10−4, with estimates obtained under a range of varied

prior scales (gray). In each case, the figure shows both the estimated SV of the factor as
well as the estimate of the long-run growth rate of real GDP growth. Panel (a) displays the
results for a very loose prior (1), while Panel (b) for a prior which is ten times looser than
the baseline (10−3). Finally, the estimates shown in Panel (c) are obtained under a tighter
prior (10−5). Again, the results reported in the paper do not seem to be affected. Both the
estimates of the SV and the long-run growth rate of real GDP are almost identical to our
main results.
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Figure F.2: Comparison Across Different Prior Scales of ω2
ε and ω2

η,i
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(b) ω2
ε = ω2

η,i = 10−3 (looser prior)
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(c) ω2
ε = ω2

η,i = 10−5 (tighter prior)
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Note: In each panel our baseline estimate of the SV of the common factor based on a scale
of 10−4 is presented (red) in the left chart. The right chart plots the estimate of the long-
run growth rate of real GDP based on the same scale. Corresponding 68% (solid blue) and
the 90% (dashed blue) posterior credible intervals are also plotted. The analogue estimates
based on the alternative prior scales are superimposed in gray in each panel.

Prior on serial correlation in factor and idiosyncratic components

As a final robustness check, we consider “Minnesota”-style priors on the autoregressive
coefficients of the factor as well as shrinking the coefficients of the serial correlation towards
zero. To be precise, we center the prior on the first lag of the factor around 0.9 and all
other lags at zero. The motivation for these priors is to express a preference for a more
parsimonious model where the factors capture the bulk of the persistence of the series and
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the idiosyncratic components are close to iid, that is closer to true measurement error. These
alternative priors do not meaningfully affect the posterior estimates of our main objects of
interest, so we omit additional figures. Note that we have found some evidence that the
use of such priors might at times improve the convergence of the algorithm. Specifically,
when we apply the model to the other G7 economies (see Section 5), we find that for some
countries where few monthly indicators are available, shrinking the serial correlations of the
idiosyncratic components towards zero helps obtaining a common factor that is persistent.

36



G Comparison with CBO Measure of Potential Output

Our estimate of long-run growth and the CBO’s potential growth estimate capture related
but not identical concepts. The CBO measures the growth rate of potential output, i.e. the
level of output that could be obtained if all resources were used fully, whereas our estimate,
similar to Beveridge and Nelson (1981), measures the component of the growth rate that is
expected to be permanent. Moreover, the CBO estimate is constructed using the so-called
“production function approach”, which is radically different from the DFM methodology.6

As a simple sanity check, it is interesting to see that despite employing different statistical
methods they produce qualitatively similar results, visible in Figure G.1, with the CBO
estimate displaying a more marked cyclical pattern but remaining for most of the sample
within the 90% credible posterior interval of our estimate. As in our estimate, most of
the slowdown occurred prior to the Great Recession. The CBO’s estimate was below ours
immediately after the recession, reaching an unprecedented low level of about 1.25% in 2010,
and remains in the lower bound of our posterior estimate since then. Section 4.6 expands on
the reason for this divergence and argues that this is likely to stem from the larger amount
of information incorporated in the DFM. In fact, the CBO estimate of potential growth is
noticeably more cyclical.

Figure G.1: Long-run GDP Growth Estimate in Comparison to CBO
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Smoothed long-run growth estimate CBO estimate of potential growth

Note: The figure displays the posterior median estimate of long-run GDP growth with the
corresponding credible intervals, as displayed in Figure 2 Panel (a) in the main body of the
paper, in comparison with the CBO’s measure of potential output growth, which is shown
in black circles.

6Essentially, the production function approach calculates the trend components of the supply inputs to a
neoclassical production function (the capital stock, total factor productivity, and the total amount of hours)
using statistical filters and then aggregates them to obtain an estimate of the trend level of output. See
CBO (2001).
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H Details About the Forecast Evaluation

H.1 Setup

Using our real-time database of US vintages, we re-estimate the following three models
each day in which new data is released: a benchmark with constant long-run GDP growth
and constant volatility (Model 0, similar to Banbura and Modugno (2014)), a version with
constant long-run growth but with stochastic volatility (Model 1, similar to Marcellino et al.
(2014)), and the baseline model put forward in the paper with both time-variation in the
long-run growth of real GDP and SV (Model 2). Allowing for an intermediate benchmark
with only SV allows us to evaluate how much of the improvement in the model can be
attributed to the addition of the long-run variation in GDP as opposed to the SV. We
evaluate the point and density forecast accuracy relative to the initial (“Advance”) release
of GDP, which is released between 25 and 30 days after the end of the reference quarter.7

When comparing the three different models, we test the significance of any improvement
of Models 1 and 2 relative to Model 0. This raises some important econometric complica-
tions given that (i) the three models are nested, (ii) the forecasts are produced using an
expanding window, and (iii) the data used is subject to revision. These three issues im-
ply that commonly used test statistics for forecasting accuracy, such as the one proposed
by Diebold and Mariano (1995) and Giacomini and White (2006) will have a non-standard
limiting distribution. However, rather than not reporting any test, we follow the “prag-
matic approach” of Faust and Wright (2013) and Groen et al. (2013), who build on Monte
Carlo results in Clark and McCracken (2012). Their results indicate that the Harvey et al.
(1997) small sample correction of the Diebold and Mariano (1995) statistic results in a good
sized test of the null hypothesis of equal finite sample forecast precision for both nested and
non-nested models, including cases with expanded window-based model updating. Overall,
the results of the tests should be interpreted more as a rough gauge of the significance of
the improvement than a definitive answer to the question. We compute various point and
density forecast accuracy measures at different moments in the release calendar, to assess
how the arrival of information improves the performance of the model. In particular, the
computations are carried out starting 180 days before the end of the reference quarter, and
every subsequent day up to 25 days after its end, when the GDP figure for the quarter is
usually released. This means that we will evaluate the forecasts of the next quarter, current
quarter (nowcast), and the previous quarter (backcast). We consider two different samples
for the evaluation: the full sample (2000:Q1-2015:Q1) and the sample covering the recovery
since the Great Recession (2009:Q2-2015:Q1).

7We have explored the alternative of evaluating the forecasts against subsequent releases, or the latest
available vintages. The relative performance of the three models is broadly unchanged, but all models do
better at forecasting the initial release. If the objective is to improve the performance of the model relative
to the first official release, then ideally an explicit model of the revision process would be desirable. The
results are available upon request.
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H.2 Point Forecast Evaluation

Figure H.1 shows the results of evaluating the posterior mean as point forecast. We use
two criteria, the root mean squared error (RMSE) and the mean absolute error (MAE). As
expected, both of these decline as the quarters advance and more information on monthly
indicators becomes available, see e.g. Banbura et al. (2012). Both the RMSE and the MAE
of Model 2 are lower than that of Model 0, particularly so from the start of the nowcasting
period, while Model 1 is somewhat worse overall. Our gauge of significance indicates that
these differences in nowcasting performance are significant at the 10% level for the overall
sample in the case of the MAE, but not the RMSE. The improvement in performance is
much clearer in the recovery sample. In fact, the inclusion of the time varying long run
component of GDP helps anchor GDP predictions at a level consistent with the weak recovery
experienced in the past few years and produces nowcasts that are ‘significantly’ superior to
those of the reference model from around 30 days before the end of the reference quarter.
In essence, ignoring the variation in long-run GDP growth would have resulted in being on
average around 1 percentage point too optimistic from 2009 to 2015.

H.3 Density Forecast Evaluation

Density forecasts can be used to assess the ability of a model to predict unusual develop-
ments, such as the likelihood of a recession or a strong recovery given current information.
The adoption of a Bayesian framework allows us to produce density forecasts from the
DFM that consistently incorporate both filtering and estimation uncertainty. Figure H.2 re-
ports the probability integral transform (PITs) and the associated autocorrelation functions
(ACFs) for the 3 models calculated with the nowcast of the last day of the quarter. Diebold
et al. (1998) highlight that well calibrated densities are associated with uniformly distributed
and independent PITs. Figure H.2 suggests that the inclusion of SV is paramount to get
well calibrated densities, whereas the inclusion of the long-run growth component helps to
get a more appropriate representation of the right side of the distribution, as well as making
sure that the first order autocorrelation is not statistically significant.

There are several measures available for density forecast evaluation. The (average) log
score, i.e. the logarithm of the predictive density evaluated at the realization, is one of the
most popular, rewarding the model that assigns the highest probability to the realized events.
Gneiting and Raftery (2007), however, caution against using the log score, emphasizing that
it does not appropriately reward values from the predictive density that are close but not
equal to the realization, and that it is very sensitive to outliers. They therefore propose
the use of the (average) continuous rank probability score (CRPS) in order to address these
drawbacks of the log-score. Figure H.3 shows that by both measures our model outperforms
its counterparts. Interestingly, the comparison of Model 1 and Model 2 suggests that failing
to properly account for the long-run growth component might give a misrepresentation of
the GDP densities, resulting in poorer density forecasts.

In addition to the above results, we also assess how the three models fare when different
areas of their predictive densities are emphasized in the forecast evaluation. To do that we
follow Groen et al. (2013) and compute weighted averages of Gneiting and Raftery (2007)
quantile scores (QS) that are based on quantile forecasts that correspond to the predictive

39



densities from the different models (Figure H.4).8 Our results indicate that while there is
an improvement in density nowcasting for the entire distribution, the largest improvement
comes from the right tail. For the full sample, Model 1 is very close to Model 0, suggesting
that being able to identify the location of the distribution is key to the improvement in
performance. In order to appreciate the importance of the improvement in the density
forecasts, and in particular in the right side of the distribution, we calculated a recursive
estimate of the likelihood of a ‘strong recovery’, where this is defined as the probability
of an average growth rate of GDP (over the present and next three quarters) above the
historical average. Model 0 and Model 2 produce very similar probabilities up until 2011
when, thanks to the downward revision of long-run GDP growth, Model 2 starts to deliver
lower probability estimates consistent with the observed weak recovery. The Brier score for
Model 2 is 0.186 whereas the score for Model 0 is 0.2236 with the difference significantly
different at 1% (Model 1 is essentially identical to Model 0).9

In sum, the results of the out-of-sample forecasting evaluation indicate that a model that
allows for time-varying long-run GDP growth and SV produces short-run forecasts that are
on average (over the full evaluation sample) either similar to or improve upon the benchmark
model. The performance tends to improve substantially in the sub-sample including the
recovery from the Great Recession, coinciding with the significant downward revision of the
model’s assessment of long-run growth. Furthermore, the results indicate that while there is
an improvement in density nowcasting for the entire distribution, the largest improvement
comes from the right tail.

8As Gneiting and Ranjan (2011) show, integrating QS over the quantile spectrum gives the CRPS.
9The results are available upon request.
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Figure H.1: Point Forecast Accuracy Evaluation

(a) Root Mean Squared Error
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(b) Mean Absolute Error
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Note: The horizontal axis indicates the forecast horizon, expressed as the number of days
to the end of the reference quarter. Thus, from the point of view of the forecaster, forecasts
produced 180 to 90 days before the end of a given quarter are a forecast of next quarter;
forecasts 90-0 days are nowcasts of current quarter, and the forecasts produced 0-25 days
after the end of the quarter are backcasts of last quarter. The boxes below each panel display,
with a vertical tick mark, a gauge of statistical significance at the 10% level of any difference
with Model 0, for each forecast horizon, as explained in the main text.
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Figure H.2: Probability Integral Transform (PITs)

(a) Model 0
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Note: The upper three panels display the cdf of the Probability Integral Transforms (PITs)
evaluated on the last day of the reference quarter, while the lower three display the associated
autocorrelation functions.
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Figure H.3: Density Forecast Accuracy Evaluation

(a) Log Probability Score

Full Sample: 2000:Q1-2015:Q1
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(b) Continuous Rank Probability Score

Full Sample: 2000:Q1-2015:Q1
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Note: The horizontal axis indicates the forecast horizon, expressed as the number of days
to the end of the reference quarter. Thus, from the point of view of the forecaster, forecasts
produced 180 to 90 days before the end of a given quarter are a forecast of next quarter;
forecasts 90-0 days are nowcasts of current quarter, and the forecasts produced 0-25 days
after the end of the quarter are backcasts of last quarter. The boxes below each panel display,
with a vertical tick mark, a gauge of statistical significance at the 10% level of any difference
with Model 0, for each forecast horizon, as explained in the main text.
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I Case Study - The Decline of The Long-Run Growth

Estimate in Mid-2010 and Mid-2011

Figure I.1 looks in more detail at the specific information that, in real time, led the model
to reassess its estimate of long-run growth. There are large reassessments of long-run growth
around July 2010 and July 2011, coinciding with the publication by the Bureau of Economic
Analysis of the annual revisions to the National Accounts, which each year incorporate
previously unavailable information for the previous three years. In both cases, the revisions
implied substantial downgrades both to GDP (Panel a) and in particular to the growth of
consumption (Panel b) in the first years of the recovery, from 2.5% to 1.6%, and instead
allocated much of the growth in GDP during the recovery to inventory accumulation. The
estimate of long-run growth produced by our model is downgraded sharply as information
about these revision is coming in, reflecting the role of consumption as the most persistent
and forward looking component of GDP. This is clearly visible in Panels (c) and (d) of Figure
I.1. In particular, Panel (c) presents the evolution of the GDP nowcast for 2010 produced
by Model 2 (black line), in comparison with the counterfactual nowcast that would result if
there had been no revisions to long-run growth (dashed line). It is evident that the bulk of
the revisions to GDP growth that year are the consequence of a large downward revision to
long-run growth. Panel (d) plots the annual nowcast of GDP produced by Model 0 (dashed
line), which does not allow for changes in long-run GDP growth, and Model 2 (solid line), our
baseline specification. Up to mid-2010, both models produce similar nowcasts (not shown).
After 2010, however, it is clearly visible that Model 0 begins each year expecting robust
growth of above 3%, only to be disappointed by incoming data. The nowcasts by Model 2,
which has incorporated the decline in long-run growth, do not suffer from the same pattern
of systematic downward surprises.
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Figure I.1: Case Study: Impact of National Accounts Revision

(a) Vintages of Real GDP
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Note: Panels (a) and (b) compare several vintages of data on real GDP and real personal
consumption expenditures around the time of important revisions by the BEA. Panel (c)
presents the evolution of the GDP nowcast for 2010 produced by Model 2 (black line), in
comparison with the counterfactual nowcast that would result if there had been no revisions
to long-run growth (dashed line). The evolution of calendar-year nowcasts of real GDP
growth produced by Model 0 (dashed) and Model 2 (solid) are presented in Panel (d).
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J Inspecting Data Set Size and Composition - More

Details

J.1 Extended Model: Estimation Using a Very Large Panel

With regards to the size of the data set, in Section 4.1 of the main text we argue in
favor of excluding disaggregated series within the various categories of real activity. This is
because of the fact that the strong correlation across series within the same category might
be a source of model misspecification. This is for two reasons: first, strong correlation in
the idiosyncratic terms of series between the same category, and second, the fact that finer
disaggregation levels are available for certain categories can lead to oversampling, see Boivin
and Ng (2006) and Alvarez et al. (2012) for more details.

It is possible, however, to consider a more general specification of our model that can
alleviate this problem, once we take into account the fact that persistent idiosyncratic move-
ments common across series of the same category usually reflect differences in phase relative
to the common activity factor. For example, all series related to employment respond to
innovations to real activity with a lag. An interesting question is how our results are affected
if one were to aim to make the dimension of yt as large as possible, instead of carefully mak-
ing variable selection based on the criteria discussed in the paper. In order to illustrate this
point, we construct a “universe” of potentially available real activity time series for inclusion,
based on a systematic attempt to find as many as possible US real activity time series. This
is the “extended model” introduced in Section 4.6 of the paper.

J.1.1 Construction of the Extended Data Set

To construct the data panel for the extended model, we proceed as follows. First, we
obtain all of the monthly real activity variables contained in the data set used by Stock
and Watson (2012), which results in 75 time series.10 Second, we exhaustively expand
the monthly series contained in our original data set along all levels and dimensions of
disaggregation available through Haver Analystics.11 Out of this collection of expanded
series, we then select any series that is not already contained in the 75 Stock and Watson
indicators. Overall, this procedure results in a data set of as many as 155 time series
capturing US real activity.12

J.1.2 Extended Model Specification

Maintaining the specification with a single factor (i.e. k = 1) we modify equation (1) of
the paper as follows:

yt = ct + Λ(L)ft + ut, (15)

10Details on this data set can be found in the online supplement to Stock and Watson (2012), available
on Mark Watson’s website. The only variable we were not able to obtain is Construction Contracts, which
is not publicly available.

11This includes for example disaggregation along sectoral, regional and demographic characteristics.
12A detailed list of variables is available upon request.
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such that the loading matrix Λ(L) is now a polynomial in the lag operator of order s, i.e.
contains the loadings on the contemporaneous common factor and its lags. In the special
case where s = 0 we obtain our baseline specification. For the extended model, we set the
maximum lag length, s = 5. The remaining equations of the model remain unchanged.

J.1.3 Priors and Model Settings

The data is standardized prior to estimation. “Minnesota”-style priors are applied to the
coefficients in Λ(L), φ(L) and ρi(L). More specifically:

• For the autoregressive coefficients of the factor dynamics, φ(L), the prior mean is set
to 0.9 for the first lag, and to zero in subsequent lags. This reflects a belief that the
common factor captures a highly persistent but stationary business cycle process.

• For the factor loadings, Λ(L), the prior mean is set to 1 for the first lag, and to zero in
subsequent lags. This shrinks the model towards the factor being the cross sectional
average of the variables, see D’Agostino et al. (2015).

• For the autoregressive coefficients of the idiosyncratic, ρi(L) the prior is set to zero for
all lags, thus shrinking the model towards a model with no serial correlation in ui,t.

In all cases, the variance on the priors is set to τ
h2

, where τ is a parameter governing the
tightness of the prior, and h is equal to the lag number of each coefficent, ranging 1 : p, 1 : q
and 1 : s+ 1. Following D’Agostino et al. (2015), we set τ = 0.2, a value which is standard
in the Bayesian VAR literature.
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J.2 Results Across Alternative Data Sets
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Figure J.1: Comparison Across Alternative Data Sets/Models

(a) Baseline With And Without Including Consumption
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(c) Mariano-Murasawa
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(d) Extended model ex. consumption
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(e) Extended model
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Note: In each panel our baseline the median estimate of real GDP growth is presented (red),
with corresponding 68% (solid blue) and the 90% (dashed blue) posterior credible intervals.
The corresponding estimates for the respective alternative data sets are superimposed in
gray.
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K A Growth Accounting Exercise

The decomposition exercise carried out in Section 5 of the paper provides a first step
towards giving an economically more meaningful interpretation of the movements in long-
run real GDP growth detected by our model. While our equation gt = zt + ht follows from
a simple identity, we demonstrate in this appendix how it can be related to the standard
growth accounting framework.

To illustrate this point, consider two versions of the standard neoclassical growth model.
In the first version, assume a standard Cobb-Douglas production function with Hicks-neutral
technological change and constant returns to scale. In growth rates, this can be written as

dlogYt = dlogTFPt + αdlogKt + (1− α)dlogHt, (16)

where Yt, Kt and Ht denote the level of output, the capital stock and labor input (total
hours), respectively. α is the capital share and TFPt is total factor productivity. Rearranging
this relation gives

dlogYt = dlogTFPt + dlogHt + α(dlogKt − dlogHt), (17)

so that the growth rate of real GDP is the sum of long-run growth in technology, total
hours and a third term which captures differential growth in input factors which implies
changes in the capital-labor ratio (“capital deepening”). In the second version of the neo-
classical growth model, consider adding growth in labor-augmenting technology in the form
of labor quality, denoted Qt. In this case, the relation between growth rates is rearranged to

dlogYt = dlogTFPt + dlogHt + α(dlogKt − dlogHt) + (1− α)dlogQt. (18)

Both relations (17) and (18) can be captured in our econometric framework. We define
the first four elements of our vector of observables yt in equation (1) to be the growth rate
in real GDP, real consumption, TFP and total hours worked. As in the baseline model,
transitory fluctuations in inputs (due to temporary shocks) would still be captured by the
cyclical dactor, ft, whereas the various sources of permanent changes in the growth rate
of inputs (say, the long-run growth rate of technology, or the long-run growth rate of the
population) would be included in at. In order to mimic the relations prescribed by the
two versions of the neoclassical growth model, we specify the long-run time variation in our
model, at as a composite of three terms. While h̃t captures long-run movements in hours, the
movements in long-run labor productivity are now further decomposed into a “technology”
term z̃t and a “non-technology” term x̃t. Formally, ct in equation (2) is constructed as

at =

z̃th̃t
x̃t

 , B =


1 1 1
1 1 1
1 0 0
0 1 0

 . (19)

What the non-technology term corresponds to depends on the underlying structure that
is assumed. For instance, in the first version of the neoclassical growth model above
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x̃t ≡ α(dlogKt − dlogHt) (20)

and in the second case

x̃t ≡ α(dlogKt − dlogHt) + (1− α)dlogQt. (21)

In both cases, x̃t subsumes potential long-run factors other than TFP that may explain
changes in the long-run labor productivity trend we discuss in the paper.13 z̃t is intended to
capture changes in the long-run technology growth rate.

Figure K.1 presents the results for US data when defining ct by (19), and the measure
of utilization-adjusted TFP from Fernald (2012) is used as an additional observable. Panel
(a) shows the posterior estimate of long-run real GDP growth (including bands), together
with the decomposition into long-run total hours growth, long-run technology growth and
long-run non-technological growth. Reassuringly, the evolution of the total long-run growth
component, gt (red) is virtually identical to the estimate from our baseline model. The
estimate of long-run hours growth (orange) is also very similar to its counterpart in Section
5 of the paper. Interestingly, the non-technological term (dashed gray) is positive on average
and is relatively stable over the sample. Finally, the key insight from panel (a) is that our
estimate of the long-run technology (green) displays strong movements that are very similar
to the long-run growth rate of labor productivity which we have extracted in the simpler
decomposition in Section 5. Under the assumption of a neoclassical structure, changes in
long-run technology growth appear to be the main driver behind the recent slowdown in
long-run real GDP growth. Panel (b) plots the growth rate of the utilization-adjusted TFP
measure by Fernald (2012) in black, together with its long-run counterpart as estimated
by our model (green, with blue bands). It is visible that the DFM approach is capable of
extracting a smooth low frequency trend from the volatile series of TFP, which captures well-
known episodes such as the 1970’s slowdown and the IT boom of the 1990’s. Overall, our
framework is capable of providing an interesting angle on real-time movements in technology
trends.

13Note here that in the first case we could also directly capture the technological parameter α into the
matrix B by setting its (1,4) and (2,4) elements to α and interpreting z̃t directly as capital deepening. The
specification above is somewhat more appealing in that it allows for a non-constant capital share. One can
easily impose a constant value for α by scaling the posterior estimate of x̃t by that value.
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Figure K.1: Results of Growth Accounting Exercise

(a) Further Decomposition of US Long-Run US Output Growth
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(b) Fernald (2012) TFP Growth: Data and Long-Run Estimate
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Note: Panel (a) displays the posterior median estimates of long-run real GDP growth in red,
together with the posterior median estimates of its components, long-run hours growth, long-
run TFP growth and long-run non-technological growth (orange dashed, green, gray dotted).
For long-run real GDP growth the corresponding with corresponding 68% and 90% posterior
credible intervals are shown in solid and dashed blue. Panel (b) plots the growth rate of
utilization-adjusted TFP by Fernald (2012) in black, together with its long-run counterpart
in our econometric framework, i.e. the estimate of z̃t, with corresponding 68% and 90%
posterior credible intervals (green/blue).
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