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Abstract

Macroeconomists constructing conditional forecasts often face a choice between taking a

stand on the details of a fully-specified structural model or relying on correlations from VARs

and remaining silent about underlying causal mechanisms. This paper develops tools for

constructing economically meaningful scenarios with structural VARs, and proposes a metric to

assess and compare their plausibility. We provide a unified treatment of conditional forecasting

and structural scenario analysis, relating them to entropic tilting. A careful treatment of

uncertainty makes our methods suitable for density forecasting and risk assessment. Two

applications illustrate our methods: assessing interest-rate forward guidance and stress-testing

bank profitability.

Keywords: Conditional forecasts, SVARs, Bayesian methods, forward guidance, stress

testing.

1. Introduction

Macroeconomists and policy analysts are routinely required to answer questions of the

form: “If, for the next few quarters, variable x were to follow alternative paths, how would

the forecasts of other variables change?” Uses of these conditional forecasts include assessing
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the impact of alternative paths for policy instruments, incorporating external information

into model forecasts, and “stress testing” asset prices or bank profits against the onset of an

economic downturn. In practice, researchers often face a choice between taking a stand on

the details of a fully-fledged DSGE model (see Del Negro and Schorfheide, 2013) or relying

on reduced-form conditional forecasts from vector autoregression (VAR) models, as proposed

by Doan et al. (1986) and Waggoner and Zha (1999). A limitation of the latter approach is

that it relies on the empirical correlations among the variables in the system, and is therefore

silent about the underlying causal mechanisms behind the results. This can often severely

confound the interpretation of conditional forecasts.

This paper develops a unified and transparent treatment of both conditional forecasting

and structural scenario analysis with structural VAR (SVAR) models. We define a structural

scenario as a combination of a path for one or more variables in the system, and a restriction

that only a chosen subset of structural shocks can deviate from their unconditional distribution.

This exercise requires identifying economically meaningful shocks. We provide closed-form

solutions for the distribution of the variables and the underlying shocks under the restrictions.

In addition, we demonstrate the equivalence of our formulae to the entropic tilting method

popularized by Robertson et al. (2005). Another contribution, which follows naturally from

the connection to entropic tilting, is to propose a metric based on the Kullback-Leibler

divergence to assess the plausibility of a given scenario. Generalizing the “modest policy

interventions” of Leeper and Zha (2003), it quantifies the degree to which a scenario involves

a moderate deviation from the unconditional distribution of the shocks, in which case the

results of the analysis are likely to be reliable. In this way, we follow the tradition of Sims

(1986) in wanting to provide practical tools for macroeconomic analysis whenever one does

not want to commit to a particular DSGE model, while retaining a healthy dose of skepticism

about the limits of structural scenarios using linear models, as stressed by Lucas (1976).

Illustrative example. To highlight the importance of specifying the structural shocks driving

a particular scenario, consider an SVAR including output growth, inflation, and the fed funds

rate, which will be analyzed in detail in our empirical application. Figure 1 compares the

different answers that arise from the classic conditional forecasting question (“What is the
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likely path of output and inflation, given that the fed funds rate is reduced to 1% and kept

there for two years?”) and an alternative one, which we call a structural scenario: “What is

the likely path of output and inflation, if monetary policy shocks lower the fed funds rate to

1% and keep it there for two years?”2 In the latter case, only the policy shocks are allowed

to deviate from their unconditional distribution to match the desired interest rate path. As

we can see, for the exact same path of the interest rate, inflation and output are lower than

in the unconditional forecast in the first exercise, but higher in the second one.

The differences are not surprising once we recognize that the bulk of the movements

in the fed funds rate represents the systematic reaction of the Fed to output and inflation

developments (see Leeper et al., 1996). The classic conditional forecasting question is really

asking: “What is the most likely set of circumstances under which the Fed might keep the

fed funds rate at 1% for two years?” The answer is “subdued output growth and inflation.”

If communicated to the public as forward guidance, this is the kind of exercise that Campbell

et al. (2012) call “Delphic”: it provides a forecast of macroeconomic outcomes and likely policy

actions based on the policymaker’s potentially superior information about future economic

fundamentals. The structural scenario exercise is instead “Odyssean” in the sense that it does

not reveal any information about future fundamentals, but rather can be interpreted as an

intention to keep the policy rate constant whatever the fundamentals happen to be. Clearly,

in order to produce the latter we will need to identify, at least, the monetary policy shock,

and the results will depend on the identification scheme used. On the contrary, identification

was not necessary for the Delphic exercise.

Relation to the literature. Classic conditional forecasts and counterfactual analyses with VARs

have a long tradition in macroeconomics, going back at least to Doan et al. (1986). Working in

the reduced-form setting, Clarida and Coyle (1984) propose an implementation based on the

Kalman filter, whereas Waggoner and Zha (1999) provide well-known methods for computing

conditional density forecasts with VAR models. Their results have been extended to large

systems (Banbura et al., 2015) and uncertainty about the paths of the conditioning variables

2Since 2009 the FOMC communicates interest rate targets as a range, e.g., “1-1.25%”. For brevity, we
always refer to the lower end in the text, but we implement all our empirical scenarios using the mid-point.
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(Andersson et al., 2010). The use of conditional forecasts has increased dramatically after the

2008-09 financial crisis, with a variety of applications including assessing structural change

(Aastveit et al., 2017; Giannone et al., 2019), evaluating of non-standard monetary policies

(Giannone et al., 2012; Altavilla et al., 2016), nowcasting and forecasting (Giannone et al.,

2014; Tallman and Zaman, 2018), and evaluating of macro-prudential policies (Conti et al.,

2018). We stress that all of this recent wave of research is reduced-form in nature, conditioning

exclusively on the path of observable variables, even when a structural interpretation is at

times intended. Our suggestion is that scenarios should be instead constructed on the basis

of economically meaningful shocks.

There is also a strand of the literature that works with identified SVARs to analyze

monetary policy alternatives (Leeper and Zha, 2003) or the impact of oil supply shocks

(Baumeister and Kilian, 2014). In a similar spirit, counterfactual analysis exercises were

carried out by Bernanke et al. (1997), Hamilton and Herrera (2004) and Kilian and Lewis

(2011), among others. Relative to existing approaches, our proposal carries several innovations.

First, we provide closed-form solutions that are valid for an arbitrary number of conditions.

Second, our definition of scenario avoids the need to elicit a priori conditions on the values of

(unobserved) structural shocks. Instead, we specify conditions on observable variables, and

select which shock(s) are driving the forecasts. We believe our approach is much more intuitive

and will greatly facilitate practical application. Finally, we provide for a more complete

treatment of uncertainty. Specifically, our methods allow us to recognize the uncertainty

about the values of the “non-driving” shocks as well as the conditioning paths for the variables

themselves, which the existing approaches have tended to shut down.3 As we will see in our

empirical applications, ignoring these sources of uncertainty may lead to excessively narrow

confidence bands around forecasts. The increasing usage of density forecasts and fan charts

3Additionally, by extending the existing Bayesian methods to set and partially identified SVARs, we
also consider uncertainty originating both from the estimation of the reduced-form parameters and from the
identification restrictions. The existing procedures, such as Baumeister and Kilian (2014) and Clark and
McCracken (2014), usually ignored parameter uncertainty. Waggoner and Zha (1999) stress that ignoring
parameter uncertainty can potentially result in misleading conditional forecasts. Of course, our methods
can be applied as well to exactly and fully identified SVARs, where the latter source of uncertainty is not a
concern.
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for policy communication and macreoconomic analysis, as well as the recent emphasis on

macroeconomic risk management (see Kilian and Manganelli, 2008), makes the treatment of

uncertainty a first-order concern.

Organization of the paper. The rest of this paper is organized as follows. Section 2 presents the

general econometric framework and formalizes the concept of structural scenarios. Section 3

introduces a measure of the plausibility of the different scenarios. Section 4 describes

algorithms to implement our techniques. Sections 5 and 6 illustrate our techniques using two

examples. First, we further develop the monetary example above and explore the effects of

forward guidance and average inflation targeting. Second, we consider a larger SVAR with

macro and financial variables, and carry out a “stress testing” exercise to assess the response

of asset prices and bank profitability to an economic recession.

2. Econometric framework

We work with the SVAR, written compactly

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T, (1)

with A′+ =
[
A′1 · · · A′p d′

]
, x′t =

[
y′t−1, . . . ,y

′
t−p, 1

]
, where yt is an n×1 vector of observables,

εt is an n× 1 vector of structural shocks, A` is an n× n matrix of parameters for 0 ≤ ` ≤ p

with A0 invertible, d is an 1×n vector of parameters, p is the lag length, and T is the sample

size. The vector of shocks εt, conditional on past information and the initial conditions

y0, ...,y1−p, is distributed N (0n×1, In), where 0n×1 is an n× 1 matrix of zeros and In is an

n× n identity matrix. The reduced-form representation implied by Equation (1) is

y′t = x′tB + u′t for 1 ≤ t ≤ T, (2)

where B = A+A−1
0 , u′t = ε′tA

−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)−1. The matrices B and Σ are

the reduced-form parameters, while A0 and A+ are the structural parameters. Similarly, u′t

are the reduced-form innovations. While the shocks are orthogonal and have an economic

interpretation, the innovations may be correlated and do not have an interpretation.
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As is well known, the model defined in Equation (1) has an identification problem. As

described in Rubio-Ramirez et al. (2010), one can reparameterize this model in terms of B

and Σ together with an n× n orthogonal rotation matrix Q, such that for a given B and Σ,

a choice of Q implies a particular, observationally equivalent choice of structural parameters.

To solve the identification problem, one often imposes restrictions on either the structural

parameters or some function–such as the impulse response functions (IRFs)–thereof, pinning

down a particular Q (point identification) or narrowing down a set of Q’s (set identification).

2.1. Unconditional forecasting

Assume that we want to forecast the observables for h periods ahead using the VAR in

Equations (1)-(2). Given the history of observables yT =
(
y′1−p . . .y

′
T

)′
, the unconditional

forecast of the observables, i.e., y′T+1,T+h =
(
y′T+1 . . .y

′
T+h

)
can be written

yT+1,T+h = bT+1,T+h + M′εT+1,T+h, (3)

where ε′T+1,T+h =
(
ε′T+1 . . . ε

′
T+h

)
are the shocks over the forecasting horizon; we will refer to

these as the future shocks. The vector bT+1,T+h is predetermined, representing the dynamic

forecast in the absence of further shocks. It depends only on the history of observables and

the reduced-form parameters of the model. The vector M′εT+1,T+h is stochastic as it involves

the future shocks, and the matrix M depends on the structural parameters. Definitions of

bT+1,T+h and M′ are given in the online Appendix. Given Equation (3), the unconditional

forecast is distributed

yT+1,T+h ∼ N (bT+1,T+h,M
′M) . (4)

It is easy to show that while M depends on the structural parameters, i.e., on the choice of

Q, M′M only depends on the reduced-form parameters. Thus, one only needs the history

of observables and the reduced-form parameters to characterize the distribution of the

unconditional forecast. It is also easy to see that, irrespective of the choice of Q, the future

shocks are distributed according to their unconditional distribution εT+1,T+h ∼ N (0nh×1, Inh).
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2.2. Conditional forecasts and structural scenarios: General framework

In general, linear restrictions on the path of future observables can be written as

CỹT+1,T+h ∼ N (fT+1,T+h,Ωf ) , (5)

where ỹT+1,T+h is the restricted forecast of the observables, and C is a k × nh (full rank)

pre-specified matrix, where k is the number of restrictions. The k × 1 vector fT+1,T+h and

the k × k matrix Ωf are the mean and covariance matrix restrictions.4 Equation (5) implies

restrictions on the distribution of future shocks; combine Equations (3) and (5) to obtain

CỹT+1,T+h = CbT+1,T+h + Dε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) , (6)

where D = CM′. Let ε̃T+1,T+h, the restricted future shocks, be distributed

ε̃T+1,T+h ∼ N (µε,Σε) (7)

so that, defining Σε = Inh + Ψε, µε and Ψε are the deviation of the mean and covariance

matrix of ε̃T+1,T+h from their unconditional counterparts. Equation (6) implies the following

restrictions on µε and Ψε

CbT+1,T+h + Dµε = fT+1,T+h (8)

D (Inh + Ψε) D′ = Ωf . (9)

Depending on k, the number of restrictions, and nh, the length of ỹT+1,T+h, the systems of

Equations (8) and (9) may have multiple solutions (k < nh), one solution (k = nh), or no

solutions (k > nh).5 Following Penrose (1955, 1956) we will choose the following general

4This formulation accommodates, in the special case where Ωf = 0k×k, the classic “hard” conditional
forecasting exercise, as defined in Waggoner and Zha (1999), as well as its generalization to density conditional
forecasts, as defined in Andersson et al. (2010).

5The presence of multiple solutions in Waggoner and Zha (1999) is highlighted by Jarociński (2010).

7



expression for µε and Ψε,

µε = D? (fT+1,T+h −CbT+1,T+h) (10)

Ψε = D?ΩfD
?′ −D?DD′D?′, (11)

where D? is the Moore-Penrose inverse of D. Because D is full rank, the Moore-Penrose

inverse always exists and is unique. From the definition of Ψε, Equation (11) implies

Σε = D?ΩfD
?′ + (Inh −D?DD′D?′) , (12)

a semidefinite positive matrix. Equations (10) and (12) make clear that linear restrictions on

the path of future observables restrict the distribution of the future shocks.6 Importantly, it

can be shown that, given the reduced-form parameters, the choice of Q affects µε and Σε.

When k ≤ nh, the system of Equations (8) and (9) is consistent, and Equations (10)

and (11) characterize the solution that minimizes the Frobenius norm of µε and Ψε. Therefore,

the Penrose solution is the one that envisages the smallest deviation of the mean and covariance

matrix of ε̃T+1,T+h from the mean and covariance matrix of εT+1,T+h. Clearly, if k = nh we

have that D? = D−1 and there is a unique solution, whereas when k > nh, the system is

inconsistent, i.e., there is no solution to the system defined by Equations (8) and (9) that

satisfies all the restrictions simultaneously. In this case Equations (10) and (11) are the best

approximated solutions (see Penrose, 1956), meaning that they minimize

‖CbT+1,T+h + Dµε − fT+1,T+h‖ and ‖D (Inh + Ψε) D′ −Ωf‖ ,

respectively, where we are using the Frobenius norm again.7

Let the restricted forecast of the observables be distributed ỹT+1,T+h ∼ N (µy,Σy). Then,

6The reader should notice that the solutions in Equations (10) and (11) do not depend on our normality
assumption. In particular, if one had assumed Student-t distributions for the shocks, the restrictions will still
imply Equations (8) and (9) and, hence, the solutions in Equations (10) and (11) will still be valid.

7Specialized formulae for the three cases are given in the online Appendix. For inconsistent systems the
Penrose solution gives the same weight to all the constraints. If a researcher wanted to give different weight
to the different restrictions, the solution can be easily amended (see Ben-israel and Greville, 2001, p.117).
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given that ỹT+1,T+h = bT+1,T+h + M′ε̃T+1,T+h, Equations (10) and (12) imply the following

expressions for µy and Σy

µy = bT+1,T+h + M′D?(fT+1,T+h −CbT+1,T+h) (13)

Σy = M′M + M′D?(Ωf −DD′)D?′M. (14)

It can be shown that the distribution of the restricted forecast of the observables, given by

Equations (13) and (14), only depends on the history of observables and the reduced-form

parameters, unless C depends on Q (see Waggoner and Zha, 1999, Proposition 1).

Equations (13) and (14) highlight that the unconditional forecast is updated in order to

incorporate the information contained in the restrictions.8 The update is affected by how

fT+1,T+h and Ωf deviate from their unconditional mean and variance, CbT+1,T+h and DD′

respectively. Importantly, Equation (14) also highlights that choosing Ωf = DD′ leads to

Σy = M′M, i.e., the variance of the unconditional forecast is preserved. This is a natural

choice when one wants to restrict the mean of the forecast without affecting its variance. As

we will see in the empirical examples, preserving the variance is of great importance if one is

going to use the model for density forecasting and risk assessment.

Relation to entropic tilting. Finally, we provide a proof, in the Gaussian case, of the equivalence

between the above framework and the method of entropic forecast tilting, popularized in the

macroeconomic literature by Robertson et al. (2005) (see also Giacomini and Ragusa, 2014).

The equivalence unifies two approaches that have evolved separately and at times have been

regarded as alternatives. Entropic forecast tilting finds the forecast distribution subject to

some linear restrictions that minimizes the relative entropy with the unconditional forecast,

as measured by the Kullback-Leibler (KL) divergence. Define the KL divergence from Q to

P as DKL(P‖Q) =
∫
X
p log(p

q
) dµ, where P and Q are probability distributions over a set X

and µ is any measure on X for which p = dP
dµ

and q = dQ
dµ

exist (meaning that p and q are

8Banbura et al. (2015) propose an alternative formulation of Equations (13) and (14) that uses the Kalman
filter and smoother, which we extend to the structural scenario case in the online Appendix. The formulas in
Equations (13) and (14) will be computationally more efficient than the Kalman filter implementation for the
majority of practical cases, except when the forecast horizon, h, is very large.
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absolutely continuous with respect to µ). We formally establish the following:

Proposition 1. Denote with NUF the distribution of the unconditional forecast represented

by Equation (4). Then µy and Σy, given by Equations (13) and (14), are the solution to the

following relative entropy problem

min
µ,Σ

DKL (N (µ,Σ) ||NUF )

subject to Cµ = fT+1,T+h and CΣC′ = Ωf .

Proof 1. See the online Appendix.

The following corollary establishes the connection between the conditional forecasting solution

and the entropic tilting problem that matches only the mean of the target distribution.

Corollary 1. The conditional forecasting solution when Ωf = DD′ is the solution to the

relative entropy problem subject to the constraint Cµ = fT+1,T+h.

In other words, conditional forecasting is equivalent to entropic tilting of the mean only

when the uncertainty around the conditioning path is set to the unconditional variance, as

discussed above. The close connection between conditional forecasting and entropic tilting

motivates the use of the KL divergence to assess the plausibility of structural scenarios, an

issue to which we return in Section 3.

2.3. Special Case 1: Conditional-on-observables forecasting

We now analyze three special cases of the framework presented above. The first is the

classic conditional forecasting exercise, as first introduced by Doan et al. (1986) and extended

by Waggoner and Zha (1999) and Andersson et al. (2010). It restricts the path of a subset of

future observables and computes the forecast of the remaining observables.

Let C be a ko×nh (full rank) pre-specified selection matrix formed by ones and zeros, with

ko denoting the number of restrictions. Conditional-on-observables restrictions are written as

CỹT+1,T+h = fT+1,T+h (see Waggoner and Zha, 1999) or more generally as density restrictions
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CỹT+1,T+h ∼ N
(
fT+1,T+h,Ωf

)
(see Andersson et al., 2010). These types of restrictions are

trivially expressed in terms of Equation (5), by making k = k0, C = C, fT+1,T+h = fT+1,T+h

and Ωf = Ωf and, hence, the expressions for µε, Σε, µy, and Σy can be obtained using

Equations (10), (12), (13), and (14) respectively.

Observe that in this case the selection matrix C does not depend on the parameters

of the model and that, hence, the distribution of ỹT+1,T+h only depends on the history of

observables and the reduced-form parameters. However, it is still the case that Q affects the

distribution of the restricted future shocks. Given a particular Q, one could back out such

a distribution using Equations (10) and (12) and attach an economic interpretation to the

conditional-on-observables forecast.

2.4. Special Case 2: Conditional-on-shocks forecasting

An alternative approach is to construct forecasts of observables restricting the path of a

subset of shocks over the forecasting horizon.9 Let Ξ be a ks × nh (full rank) pre-specified

selection matrix formed by ones and zeros, with ks denoting the number of restrictions.

Restrictions on the shocks can generally be written as Ξε̃T+1,T+h ∼ N (gT+1,T+h,Ωg), where

the ks × 1 vector gT+1,T+h and the conformable matrix Ωg are the mean and covariance

matrix restrictions to Ξε̃T+1,T+h.
10 Provided that the VAR is invertible (see Fernández-

Villaverde et al., 2007), the shocks can always be expressed as a function of observed variables,

given the structural parameters of the model: ε̃t+1,t+h = (M′)−1ỹt+1,t+h − (M′)−1bt+1,t+h.

Therefore, restrictions on future shocks can be written as linear restrictions on the path of

future observables; specifically the restriction implies CỹT+1,T+h ∼ N
(
fT+1,T+h,Ωf

)
where

C = Ξ(M′)−1, fT+1,T+h = CbT+1,T+h + gT+1,T+h and Ωf = Ωg. Thus, conditional-on-

shocks forecasting can be expressed in terms of Equation (5) by making k = ks, C = C,

fT+1,T+h = fT+1,T+h and Ωf = Ωf and, hence, the expressions for µε, Σε, µy, and Σy can be

obtained using Equations (10), (12), (13), and (14) respectively. The crucial point is that

the matrix C now depends on M, which in turn depends on Q. The intuition is clear; in

9Baumeister and Kilian (2014) use an SVAR of the oil market to analyze the impact of a hypothetical oil
supply shock. This practice is also used within DSGE models (see Del Negro and Schorfheide, 2013).

10Exact restrictions as in Baumeister and Kilian (2014) can be implemented fixing Ωg = 0ks×ks
.
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order to impose restrictions upon their future path, we need to identify the shocks.11

2.5. Special Case 3: Structural scenario analysis

Conditional-on-shocks forecasting has the unappealing feature that, since the shocks are

unobserved, it is difficult to elicit a priori restrictions on their future paths.12 Here we show

how the results of Sections 2.3 and 2.4 can be combined to approach this problem in a single

step, which we call structural scenario analysis. A structural scenario is defined by combining

restrictions on the path of future observables with a restriction that only a subset of the

future shocks –the driving shocks– can deviate from their unconditional distribution over

the forecasting horizon. Unlike in the conditional-on-observables case, the remaining future

shocks –the non-driving shocks– are restricted to retain their unconditional distribution.

Let C be a ko × nh (full rank) pre-specified selection matrix formed by ones and zeros,

with ko denoting the number of restrictions on the observables. Let Ξ be a ks × nh (full

rank) pre-specified selection matrix formed by ones and zeros that selects the ks non-driving

shocks and whose distribution is going to be restricted to be the same as their unconditional

one. As in Section 2.3, the restriction on the path of future observables is implemented

by imposing CỹT+1,T+h ∼ N (fT+1,T+h,Ωf ) ., whereas as in Section 2.4, we impose that

Ξε̃T+1,T+h ∼ N (0ks×1, Iks) . The latter, in turn, implies CỹT+1,T+h ∼ N (CbT+1,T+h, Iks),

where C = Ξ(M′)−1. Thus, the restrictions embedded in a structural scenario can also be

expressed in terms of linear restrictions on the path of future observables

ĈyT+1,T+h ∼ N


 fT+1,T+h

CbT+1,T+h


︸ ︷︷ ︸

f̂T+1,T+h

,

 Ωf 0ko×ks

0ks×ko Iks


︸ ︷︷ ︸

Ω̂f

 , (15)

with Ĉ′ = [C
′
,C′]. Observe that Equation (15) stacks the two sets of restrictions considered

11It is easy to show that, since the shocks are independent, the future shocks that are not part of the
conditioning exercise retain their unconditional distribution.

12In practice, the papers that use that method calibrate the value of the shocks to generate the desired
impact on a particular observable, or iterate between the shocks and the observables until achieving that
result (see Baumeister and Kilian, 2014; Clark and McCracken, 2014).
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in previous subsections. The upper block states that a selection of variables must follow the

path fT+1,T+h in expectation; the second block states that the non-driving shocks must retain

their unconditional distribution. For the same reasons explained in Section 2.4, the structural

scenario depends on the choice of identification scheme, given that the matrix Ĉ depends on

M, which in turn depends on Q. The types of restrictions expressed in Equation (15) are

again a special case of Equation (5), by making k = ko + ks, C = Ĉ, fT+1,T+h = f̂T+1,T+h

and Ωf = Ω̂f and, hence, the expressions for µε, Σε, µy, and Σy can be obtained using

Equations (10), (12), (13), and (14) respectively.

The structural scenario analysis presented here is reminiscent of the counterfactual analysis

often employed in the SVAR literature to report the impact of a particular structural shock

assuming a specific path of a policy variable.13 These counterfactuals correspond to particular

structural scenarios where one variable and all shocks but one are restricted for the entire

forecast horizon. Thus, the counterfactuals impose ko + ks = nh. The framework above is a

generalization of such exercises, providing closed-form solutions for cases in which ko+ks 6= nh.

Moreover, the previous literature has always considered the case with no uncertainty around

the scenario, i.e., Ω̂f = 0(ko+ks)×(ko+ks), whereas the above framework generalizes to uncertain

scenarios.14 Finally, observe that in the specific case in which the restricted observable is a

policy instrument and the only structural shock driving the scenario is the associated policy

shock, our procedure is equivalent to the “modest policy interventions” analyzed by Leeper

and Zha (2003). We expand on this point in the next subsection.

3. How plausible is the structural scenario?

When analyzing a structural scenario using SVARs, one should be careful that the implied

shocks are not so “unusual” that the analysis risks falling into the criticism put forward by

13The objective of counterfactual analysis is to answer “what if” questions. For instance, Bernanke et al.
(1997), Hamilton and Herrera (2004) and Kilian and Lewis (2011) analyze the impact of an oil price shock
under the assumption that the Fed does not respond.

14The previous literature typically imposes Ω̂f = 0k and, therefore, misrepresents the uncertainty in the

scenarios. There are two types of uncertainty related to the fact that Ω̂f 6= 0k. By setting Ωf 6= 0ko
we are

considering uncertainty surrounding the restrictions on the observables. By setting the covariance matrix of
Ξε̃T+1,T+h to Iks

instead of to 0ks
we are considering uncertainty surrounding the non-driving future shocks.
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Lucas (1976). We previously highlighted how a structural scenario is associated with a distri-

bution of the future driving shocks that deviates from its unconditional counterpart. When

this deviation is large, we deem the scenario implausible. Moreover, Proposition 1 established

that Equations (13) and (14) are the solution that minimizes the relative entropy from the

unconditional forecast to the structural scenario, or equivalently, from the unconditional

distribution of the future shocks to their distribution under the scenario.15 We therefore

propose to use the KL divergence as a measure of how plausible a scenario is.

Specifically, denote with NSS the distribution of the shocks compatible with the structural

scenario and NUF their unconditional distribution. Remember that NUF is the standard

normal distribution, so we have that the KL divergence from NUF to NSS is

DKL(NSS‖NUF ) =
1

2
(tr (Σε) + µ′εµε − nh− ln(det Σε)) (16)

where µε and Σε are given by Equations (10) and (12).

While it is straightforward to compute DKL(NSS‖NUF ) using Equation (16), it is difficult

to grasp whether any value for the KL divergence is large or small. In other words, the KL

divergence can be easily used to rank scenarios but it is hard to understand how far away they

are from the unconditional forecast. To ease the interpretation of the KL divergence, we adapt

an idea of McCulloch (1989), who proposes “calibrating” the KL divergence from Q to P , two

generic distributions, using the KL divergence between two easily interpretable distributions.

In particular we suggest comparing DKL(NSS‖NUF ) with the divergence between two binomial

distributions, one with probability q and the other with probability 1/2.16 Let B(m, p) denote

the binomial distribution that runs m independent experiments, each of them with probability

p of success. Here m = nh represents the number of independent realizations of the shocks

over the scenario. We suggest calibrating the KL divergence from NUF to NSS to a parameter

15The KL divergence, DKL, is invariant to linear transformations, and hence it is equivalent to consider
DKL related to observables or shocks, since these are linearly related.

16McCulloch’s (1989) original approach employed instead a comparison between two Bernouilli distributions.
The drawback of that approach in our setting is that q is not invariant to the dimension of the scenario, nh.
Specifically, for any µε 6= 0nh×1 and Σε 6= Inh, the KL divergence from NUF to NSS increases linearly with
nh and q → 1. The use of the binomial distribution retains the original interpretation but is scale invariant.
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q that would solve the following equation DKL(B(nh, 0.5)‖B(nh, q)) = DKL(NSS‖NUF ). The

solution to the equation is q = 1
2

(
1 +

√
1− e− 2z

nh

)
where z = DKL(NSS‖NUF ). In line

with McCulloch’s (1989) original idea, any value for the KL divergence is translated into a

comparison between the flip of a fair and a biased coin. For example, a value of q = 0.501

suggests that the distribution of the shocks under the scenario considered is not at all far

from its unconditional counterpart, and the scenario considered is quite realistic. With a

value of q = 0.99 the restrictions imply a substantial deviation of the future shocks from their

unconditional distribution, suggesting that the scenario is quite unlikely.17

Our measure of plausibility is in the spirit of the concept of “modest intervention” used

in Leeper and Zha (2003). Their measure reports how unusual is the path for policy shocks

needed to achieve some conditional forecast, relative to the typical size of the shocks. If the

scenario implies a sequence of shocks close to their typical size, the intervention is considered

modest, and the results of the analysis are likely to be reliable. If instead the scenario involves

an unlikely sequence of shocks, Leeper and Zha (2003) argue that economic agents may alter

their behavior in meaningful ways and the analysis is deemed implausible.

Our metric compares the entire distribution rather than the path of the policy shocks,

and generalizes to scenarios other than those involving a single policy instrument and a single

policy shock.18 Moreover, an appealing feature of a metric based on the KL divergence is

that it provides an information-theoretical interpretation of the scenario, in terms of how

much information is added by the restrictions. If a scenario involves meaningful distortions

of the probability distribution of the underlying shocks, we should deem it as implausible

and the metric calls for caution about the use of the SVAR for this particular task.

17In order to get a sense of how large is a specific calibration value, q, it might be useful to draw a parallel
with a standard IRF, in which only one shock is active, equal to 1 s.d. for one period, and zero otherwise.
With, say, n = 8 and h = 12, and assuming Σε = Inh, we have q = 0.55, a very reasonable scenario. A large,
but not unreasonable, 2 s.d. shock, leads instead to q = 0.6. Moreover, a sequence of 1 s.d. shocks over 12
consecutive quarters leads to a q = 0.67, roughly equivalent to the q obtained from a single 3.5 standard
deviation shock. For an extremely large shock of 10 s.d. we get a q = 0.9.

18That Leeper and Zha (2003) compare the path of the policy shocks is a consequence of the fact that
they set all other shocks to zero.
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4. Algorithms for implementation

In this section we briefly sketch a Bayesian algorithm for implementation of the gen-

eral framework above, which includes conditional-on-observables, conditional-on-shocks and

structural scenarios as special cases. In the interest of space, we describe the main features

here, relegating the technical details to the online Appendix. It should be clear that our

objective is to draw from the following joint posterior p(ỹT+1,T+h,A0,A+|yT , IR,SR) where

IR are the structural identification restrictions, and SR are the restrictions on the path of

future variables, shocks, or both. As explained by Waggoner and Zha (1999), drawing from

this posterior distribution is a challenging task. It is tempting, in a first step, to draw the

structural parameters from their distribution conditional on yT and on IR, and in a second

step to draw ỹT+1,T+h conditional on yT , on SR and on the structural parameters using

Equations (13) and (14). However, this procedure ignores the restrictions in Equation (15)

when drawing the structural parameters and, hence, would not lead to a draw from the desired

joint posterior. Instead, to draw from the joint distribution of interest, a Gibbs sampler

procedure must be constructed that iterates between draws from the described conditional

distributions of the structural parameters and ỹT+1,T+h in the following way

Algorithm 1. Initialize yT+h,(0) = [yT , ỹ
(0)
T+1,T+h], e.g., at the mean unconditional forecast

1. Conditioning on yT+h,(i−1) = [yT , ỹ
(i−1)
T+1,T+h], use any valid algorithm to produce one

draw from the structural parameters, (A
(i)
0 ,A

(i)
+ ) satisfying IR.

2. Conditioning on (A
(i)
0 ,A

(i)
+ ) and yT , draw ỹ

(i)
T+1,T+h ∼ N (µy,Σy) satisfying SR using

Equations (13) and (14).

3. Return to Step 1 until the convergence and a sufficient number of draws have been

obtained.

The algorithm above extends the one developed by Waggoner and Zha (1999), with the key

difference that we now need to identify the SVAR. For example, in the case of the traditional

recursive zero restrictions, Step 1 could draw the reduced-form coefficients and obtain A0

from the Cholesky decomposition of Σ. In the case of sign restrictions, Step 1 may be any of
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the algorithms in Rubio-Ramirez et al. (2010) or Baumeister and Hamilton (2015). In the

cases of narrative sign restrictions (NSR) as in Antolin-Diaz and Rubio-Ramirez (2018) and

traditional sign and zero restrictions as in Arias et al. (2018), an importance-sampling step is

required to draw from the posterior of (A0,A+), which needs to be done at the end of Step 1.

4.1. The importance of using all available identification restrictions

When we use restrictions that set identify the model, the results of the structural scenario

analysis will be valid across a set of structural models that satisfy the restrictions. This

attractive feature will come at the cost of possibly wide confidence bands around the forecast.

Most importantly, there is the risk of including many models with implausible implications

for elasticities, structural parameters, shock realizations and historical decompositions.19 For

instance, in the applications with monetary policy shocks that we present below, we find that

a strategy based exclusively on traditional sign restrictions on IRFs often leads to implausibly

large elasticities of observable variables to a monetary policy shock, mirroring the results

of Kilian and Murphy (2012).20 In the examples, we will propose using a combination of

traditional sign and zero restrictions at various horizons, as in Arias et al. (2016), bounds on

elasticities, and the recently proposed NSR of Antolin-Diaz and Rubio-Ramirez (2018) to

narrow down the set of admissible structural parameters and obtain meaningful scenarios.

5. Application 1: Monetary policy and the power of forward guidance

Our first application concerns the effects of communicating future monetary policy shocks.

We provide new empirical estimates of the effects of anticipated monetary policy shocks,

compare alternative structural scenarios to the ones obtained with DSGE models, and evaluate

the potential of “makeup” strategies for inflation targeting.

19This point has been forcefully argued by Kilian and Murphy (2012), Ahmadi and Uhlig (2015), Arias
et al. (2016), Ludvigson et al. (2017) and Antolin-Diaz and Rubio-Ramirez (2018).

20These elasticities are much larger than the upper bound reported in Ramey’s (2016) literature review.
These translate into explosive forecasts of the variables even for modest deviations of the conditioned variable
from its unconditional path.
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Setup and identification. We work with the data set of Smets and Wouters (2007) (SW07),

which contains seven key US macroeconomic time series at quarterly frequency: real output,

consumption, investment, wages and hours worked per capita, inflation and the fed funds

rate. Their data set starts in Q1 1966; we update it through Q4 2019. In order to identify

anticipated monetary policy shocks, we will need a variable capturing changes in expectations

of future interest rates. We follow an approach similar to that of Campbell et al. (2012) and

use expectations from the Survey of Professional Forecasters (SPF), available for the first

four quarters. Specifically, define as ESPF
t [it+h] the mean SPF expectation at time t of the

short-term interest rate h quarters ahead. Then, the variable St,h ≡ ESPF
t [it+h]− ESPF

t−1 [it+h]

for h = 0, . . . , 3 measures the surprise to expectations, i.e., the change in the information

set, from t− 1 to t. Campbell et al. (2012) point out that surprises across horizons h exhibit

a strong factor structure, so we take the average across horizons, S̄t ≡ 1/4
∑3

h=0 St,h as a

measure of the surprises to the average expected interest rate for the next year.21. After

appending S̄t to the SW07 data set, we estimate an SVAR with p = 4 lags and an informative

“Minnesota” prior (Doan et al., 1986; Sims, 1993) over the reduced-form parameters.22 We

identify two orthogonal monetary policy shocks by means of the following restrictions.

Identification Restriction 1: (Unanticipated Monetary Policy Shocks) The unanticipated

monetary policy shock increases the fed funds rate on impact, decreases output, inflation,

consumption, investment, hours and wages on impact, and has zero impact on the level of

GDP in the long run, and a negative long-run impact on the price level. Moreover, it takes a

positive value in Q4 1979 and is the single largest contributor to the unexpected movement

in the fed funds rate in the same quarter. Finally, we restrict the maximum peak to trough

response of output to a 100bp monetary policy shock to 10 pp.

21Using instead the first principal component yields essentially identical results. In the online Appendix,
we show that inclusion of this variable among the observables in a DSGE model featuring anticipated shocks
is enough to guarantee invertibility of the VAR representation, and thus the ability to recover the structural
shocks from the reduced-form innovations (see Fernández-Villaverde et al., 2007)

22See the online Appendix for exact definitions of the variables and prior.
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The traditional sign and zero restrictions are satisfied by standard New Keynesian models

such as Christiano et al. (1999) or SW07. The NSR follows Antolin-Diaz and Rubio-Ramirez

(2018) and is motivated by the historical account of the Volcker tightening. The bound on

the elasticity, set to twice the maximum amount reported by Ramey (2016), rules out models

in which very small changes in the interest rate lead to massive declines in output.

Identification Restriction 2: (Anticipated Monetary Policy Shocks) The anticipated

monetary policy shock has the same sign effects on impact, zero long-run effects, and elastic-

ity bounds as the unanticipated shock. Additionally, the effect on the fed funds rate is positive

for the first three quarters, and it increases the surprise variable S̄t on impact. Normalizing

for the size of the impact on the fed funds rate, the increase in S̄t is larger than the one

caused by the unanticipated monetary policy shock. Finally, the anticipated monetary policy

shock satisfies the NSR in Table 1.

Consistent with the evidence that policy surprises are correlated across horizons, we aim to

identify a shock that affects the level of the interest rate over the next year, without imposing

zero impact of the anticipated shock on the contemporaneous fed funds rate.23 We derive the

restrictions above from the ones implied by introducing an equivalently defined anticipated

monetary policy shock within the SW07 DSGE model.24 The NSR improve the identification

by bringing in information about announcements made by the Federal Reserve in 2003 and

2011-2012.25 Notice that we only impose the sign of the shocks because our reading of

these events indicates that contemporaneous news about growth and inflation may have also

influenced the announcements. We wish to stress that in general the surprise variable S̄t

is almost certainly affected in any quarter by many other shocks. Therefore, it would not

23In our setting, an announcement of future actions with no contemporaneous change in the policy rate is
best thought of as a combination of anticipated and unanticipated shocks

24Specifically, we introduce an anticipated monetary policy shock to the central bank reaction function in
line with Campbell et al. (2012) and Campbell et al. (2017). The monetary policy ‘news’ shock obeys a simple
factor structure for the first four quarters that embodies the idea that forward guidance is characterized by
an announcement of a persistent deviation from the usual conduct of policy. Full details are available in the
online Appendix.

25A motivation based on FOMC statements, minutes and transcripts is provided in the online Appendix.
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constitute a valid instrument for anticipated monetary policy shocks. The advantage of the

NSR approach in this context is that it allows us to incorporate the information that these

shocks were affecting expectations during specific events.

For the results that follow it will be useful to also identify an “aggregate demand” shock,

which generates positive co-movement between interest rates and business cycle variables.

Identification Restriction 3: (Aggregate Demand Shocks) The aggregate demand shock

has a positive effect on impact on output, consumption, investment, hours, wage, inflation

and the fed funds rate, and zero long-run impact on the level of GDP.

Figure 2 displays the IRFs of key variables to the two policy shocks.26 While the effects of the

two shocks are quite similar, normalizing for the peak effect on the fed funds rate, the impact

of the anticipated shock on output and inflation is somewhat larger and more persistent.

The SVAR results do not display the “forward guidance puzzle” reported by Del Negro et al.

(2012), and McKay et al. (2016), who find unrealistically large effects of anticipated shocks

using DSGE models. We will expand on the reasons for this difference below.

Structural Scenario 1: Delphic vs. Odyssean forward guidance. The first of our exercises

considers the two alternative questions we referred to in the introduction, the results of

which we anticipated in Figure 1. In particular, we consider an exercise that might have

been contemplated by the FOMC at the end of 2019. After three consecutive 25-basis-point

cuts in previous meetings, the FOMC decided to keep the fed funds rate at a range of 1.5

to 1.75%. What if the FOMC had at this point announced a further reduction to 1%, after

which the policy rate would be held constant for two years? In terms of our framework, this

“dovish” scenario can be implemented as a restriction on the path of future observables using

Equation (5). But whether we frame it in terms of a conditional-on-observables forecast

or a structural scenario will yield completely different answers. Figure 3 illustrates this

26The IRFs of the remaining variables and shocks are displayed in the online Appendix.
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point by comparing the unconditional distribution of the three identified shocks in the first

period of the forecast to the one resulting from several conditional-on-observables forecast

and structural scenario exercises. As we can see in Panel (a), the conditional-on-observables

exercise involves contractionary demand shocks generating, through the systematic reaction

of the central bank, a positive co-movement between inflation and interest rates. As a result,

output and inflation are weak. In this sense the exercise is at least partially Delphic. There

are many occasions in which this setting may not be appropriate. For instance, in September

2012 the FOMC announced it expected to keep interest rates constant until mid-2015. The

minutes of the meeting make clear that

“[the] new language was meant to clarify that the maintenance of a very low fed

funds rate over that period did not reflect an expectation that the economy would

remain weak, but rather reflected the Committee’s intention to support a stronger

economic recovery.”27

We make this idea operational with a scenario in which all non-policy shocks are restricted

to retain their unconditional distributions. By doing so, we avoid inferring anything about

future demand and supply shocks from the lower path of interest rates. The results for the

path of output and inflation are visible in Panel (b) of Figure 1, and for the associated shocks

in Panel (b) of Figure 3. As we can see, there is a moderate boom in output, and inflation is

slightly above the unconditional forecast. In the conditional-on-observables forecast, monetary

policy shocks also played a role, reflecting the likelihood that at least some movements in

interest rates represent exogenous policy actions. In that sense it mixes Delphic and Odyssean

content. Can we construct a strictly Delphic scenario? The answer is yes. We create a

Delphic variant of the scenario by restricting the two policy shocks to their unconditional

distribution, leaving all other shocks unconstrained. The results can be seen in Figure 4 and

the associated distribution of first period shocks is in Panel (c) of Figure 3. Output and

inflation are now even lower than in the conditional-on-observables forecast, since we are

shutting down the possibility that expansionary monetary policy shocks play any role.

27Emphasis ours. See “Minutes of the Federal Open Market Committee” September 12-13, 2012 (Released
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The importance of quantifying uncertainty. In the scenarios above we fixed the path for

the fed funds rate with zero uncertainty, i.e., Ωf = 0ko×ko , as has been traditional in the

literature. As pointed out by Andersson et al. (2010), this will lead to a reduction in the

variance of the conditional forecast relative to the unconditional forecast. Instead, when one

wants to preserve the uncertainty present in the unconditional forecast, the variance around

the fed funds rate can be set to Ωf = DD′, as proposed in Section 2.2. In the monetary

policy example, this has an interesting economic interpretation. When fixing the policy

instrument to a particular path, the scenario can be interpreted as an ironclad commitment:

the monetary policy will follow that path no matter what the realizations of the other shocks

are. If instead uncertainty about the fed funds path is recognized, the exercise acquires the

flavor of a “data dependent” commitment.

If one further imposed that the “non-driving” shocks are equal to zero, i.e., Ωg = 0ks ,

an even greater reduction in the variance of the forecast would result.28 Intuitively, this

assumption implies that the forecaster has knowledge that these shocks will not occur. As a

result, the forecast density produced will greatly underestimate the underlying uncertainty

about the future. Instead, by setting their distribution equal to the unconditional distribution,

i.e., Ωg = Iks we take the position of a forecaster who possesses no additional knowledge

(over the unconditional forecast) about the “non-driving” shocks. Ignoring these two sources

of uncertainty may make the results implausible and substantially less useful, particularly

if one is interested in density forecasting. To illustrate this point, Table 2 reports, for the

Odyssean variant of Scenario 1, the plausibility metric from Section 3 and a number of risk

metrics, such as “value at risk” for growth and inflation as well as the probability of observing

a prolonged period of low growth and inflation with and without both sources of uncertainty.

Notice that the posterior mode of the plausibility metric is equal to 1 (a large distortion of

the distribution of shocks) and the risk metrics are considerably more sanguine than in the

unconditional forecast when uncertainty is ignored. Instead, when uncertainty about both

October 4, 2012). https://www.federalreserve.gov/monetarypolicy/fomcminutes20120913.htm
28This is the implicit assumption of existing methodologies, including Leeper and Zha (2003), Baumeister

and Kilian (2014), and Banbura et al. (2015). A figure displaying the consequences of the alternative
treatments of uncertainty for the density forecasts for this exercise is available in the online Appendix.
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the conditioning variable and the non-driving shocks is recognized, the posterior mode of the

plausibility metric is 0.83 (an unlikely but not completely implausible scenario) and the risk

metrics are now an order of magnitude similar to the ones in the unconditional forecast.

A final observation relates to the fact that risks are generally deemed to be higher when

considering structural scenarios than in the unconditional forecast. This reflects uncertainty

stemming from the set identification of the structural parameters, which would be absent

in exactly-identified models. In other words, with set identification the researcher is more

uncertain about the causal impact of monetary policy shocks, whereas this uncertainty

cancels out in the unconditional forecast, which is based only on correlations. This additional

uncertainty needs to be taken into account when performing risk assessment exercises.

Structural Scenario 2: Evaluating forward guidance in the time of Greenspan. Our next

exercise considers the difference between anticipated and unanticipated monetary shocks in

more detail, and compares the results of our approach to the ones that would be obtained

with the workhorse SW07 DSGE model. In particular, we examine the tightening cycle of

2004-2006, noteworthy for the fact that, in the prior year, the FOMC had been experimenting

with forward guidance about the future path of interest rates. To simulate a real-time exercise

we re-estimate our SVAR model using the vintage of data ending in Q4 2004, the original

data set used by SW07.29 For the DSGE model we fix the parameters to the posterior

modal estimates reported by Smets and Wouters and introduce an anticipated monetary

policy shock that is consistent with our identification strategy above and construct equivalent

scenarios.30 In Q3 2004, the FOMC initiated a tightening sequence that increased the fed

funds rate by 25-basis-points each meeting until reaching 5.25%. What if instead the FOMC

had decided to postpone that process by one year, keeping interest rates constant until then

using policy shocks? How would the results differ depending on whether such an action was

communicated in advance? Figure 5 compares the answers obtained using our SVAR and the

29To identify the shocks, we only use the NSR up to Q2 2004.
30Since the SW07 model does not have a VAR representation, we cannot apply Equations (10)-(14) or

algorithm 1 directly to compute the scenarios for the DSGE model. However, conditioning on the parameters,
we can use the state-space representation of the model and the Kalman filter to compute the mean of the
scenario. For this reason we only report point estimates for the SW07 model.
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DSGE model. Panel (a) implements this scenario only through unanticipated shocks. As we

can see, the results of the SVAR are very similar to the point estimates from the DSGE model,

though the effect on inflation appears slightly more front loaded. As we can see in Panel (b),

things are more different in the case in which anticipated shocks are included. Using New

Keynesian DSGE models, Del Negro et al. (2012) and McKay et al. (2016) find responses to

anticipated policy shocks that are unrealistically large, and become even larger the longer

the horizon of anticipation. The SVAR instead finds that the differences between anticipated

and unanticipated policies are relatively minor.31 Moreover, in the present exercise, since the

horizon of anticipation spans only the first four quarters, we observe only a modest forward

guidance puzzle with the DSGE, and the results are similar to the ones obtained with the

SVAR. For scenarios that envision more drastic deviations from the unconditional forecast, or

actions expanding into more distant horizons, however, the differences can become very large.

Our empirical results provide a useful benchmark for any theoretical developments that aim

to solve the forward guidance puzzle. The exercise also highlights one of the main practical

motivations behind our paper: the scenarios conducted with DSGE models can be sensitive

to the details of the model assumptions, whereas the ones constructed with SVARs will be

consistent with a set of incompletely specified and not fully trusted models. When one is

uncertain about which underlying structural model to use, our methodology will constitute a

pragmatic alternative.

Structural Scenario 3: Returning to the price level target. Our final exercise considers a

different thought experiment. Since the FOMC announced a 2% inflation target in January

2012, the average rate of inflation as measured by the PCE deflator excluding food and energy

turned out to be 1.6%, resulting in a 4% cumulative shortfall relative to a hypothetical price

level target by the end of 2019. The possibility of adopting a “makeup” strategy that would

aim to revert the past shortfall has been widely discussed in policy circles in recent years.32

What distribution of policy shocks would be required going forward to return to the 2% price

31The plausibility metric is 0.84 in the case where anticipation is allowed, and 0.8 when it is not, indicating
that such exercises already imply a meaningful divergence from the unconditional distribution.

32See, e.g., Bernanke (2017). Those “makeup” strategies are also discussed within the Federal Reserve
“Review of Monetary Policy Strategy, Tools, and Communication Practices;” see, e.g., Clarida (2019).
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level target, say, within 5 years? It is straightforward to implement this question using our

structural scenario framework where only the two policy shocks are allowed to deviate from

their unconditional distribution. Suppose that inflation is the i-th variable in the system

and that one wanted to eliminate a cumulative shortfall of π̂ over h periods. We can write

this restriction as 1/h
∑h

s=1 yi,t+s ∼ N (2+π̂/h, ωf ). The restriction states that the average

inflation over the forecast horizon needs to be, in expectation, above the 2% target by π̂/h

every period in order to eliminate the past accumulated inflation shortfall, with variance

ωf . Notice that our methodology is flexible enough that we do not need to input a specific

path of inflation. Our method will yield the distribution of future policy shocks that is

consistent with the smallest deviation from their unconditional distribution while satisfying

the restriction on 1/h
∑h

s=1 yi,t+s. Moreover, the interest rate distribution we obtain will be

the one that “makes up” for the past inflation shortfall with the smallest deviation from the

usual policy rule. The results can be seen in Figure 6. Inflation needs to increase gradually,

peaking at 2.9% in mid-2023, before returning to the 2% target. In order to achieve the

inflation, the fed funds rate is cut to about 1.3%, after which it starts increasing rapidly,

until reaching 4% in 2023. This large tightening is required to cool down the boom in output

and inflation triggered by the new policy and bring inflation back to target. Using a car

analogy, to catch up a car ahead of you that goes as fast as you, one needs to accelerate first

and then decelerate. Decelerating the pace of price increases, requires higher interest rates to

weaken aggregate demand. The results for output highlight a clear risk: while the price level

successfully returns to the target, the subsequent tightening implies meaningful probabilities

(around 46%) of negative annual growth in the fourth and fifth years of the sample. If the

return to the price level target would be executed over a longer period, the implied slowdown

would be less pronounced. Interestingly, this scenario produces larger effects on output and

inflation than the apparently more aggressive interest rate cuts of Scenario 1. The reason is

that Scenario 3 involves a greater share of anticipated monetary policy shocks relative to

Scenario 1, which included a large unanticipated movement in the first period. As reported

in Table 2, the plausibility metric for this scenario has a posterior mode of 0.73, suggesting

it is a much more likely scenario than Scenario 1. Our results are consistent with policy
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communication being an effective way to achieve the central bank’s objectives.33

6. Application 2: Stress-testing the response of asset prices to a recession

Our second application studies the impact of an economic recession on asset prices and

bank profitability. We highlight that the potential impact of a recessionary episode can be

very different depending on the shock driving it. Specifically, we will show how a recession

caused by financial shocks, like the one of 2007-09, can have a more damaging impact on bank

profitability (and other financial variables) than recessions driven by other types of shocks. We

augment the macro data set from the previous application by adding the unemployment rate,

as well as a number of financial variables: the 3-month Treasury bill to 10-year government

bond yield spread, the quarterly change in the S&P 500 stock price index, the quarterly

change in the S&P Case-Shiller House Price Index, the real price of oil, the BAA credit

spread, the 3-month Treasury bill-eurodollar (TED) spread; and an indicator of profitability

in the banking system as a whole, the return on equity (ROE) of FDIC-insured institutions.34

Sample is from Q1 1966 to Q4 2019. We identify a single financial shock that resembles the

one at work during the last recession through the following combination of traditional and

narrative sign restrictions:

Identification Restriction 1: (Financial Shock) The financial shock has a negative impact

on stock prices and bank profitability, and increases the BAA and TED spreads. Moreover,

the financial shock for the observation corresponding to the fourth quarter of 2008 must be

of positive value and be the overwhelming driver of the unexpected movement in the TED

spread and credit spread.

The NSR are based on the account in Bernanke (2015), which highlights how the collapse

of Lehman Brothers on September 13, 2008 caused “short-term lending markets to freeze

and increase the panicky hoarding of cash” (p. 268), “fanned the flames of the financial

33Two alternative scenarios are presented in the online Appendix. The first considers returning to the
price level target over ten years instead of five. The second one features only unanticipated shocks. The
results of the latter indicate that a more volatile interest rate path and a higher probability of recession would
be required to achieve the same objective.

34See the online Appendix for the definition of the variables and details of the model’s specification.
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panic” (p. 269), “directly touched off a run on money market funds” (p. 405), and “triggered

a large increase in spreads” (p. 405). The construction of the scenarios borrows from the

Federal Reserve’s “2019 Supervisory Scenarios for Annual Stress Tests Required under the

Dodd-Frank Act Stress Testing Rules and the Capital Plan Rule.”35 We take the path of

GDP and the unemployment rate described in the Fed’s “adverse scenario.” It describes a

medium-sized recession in which output falls for five consecutive quarters and then recovers

gradually, whereas the unemployment rate increases until it reaches 7%. As before, we

consider uncertainty around the path of the conditioning variables by setting Ωf = DD′.

Conditional on the restrictions for GDP and unemployment, we consider two distinct scenarios.

In the first, the recession is caused by a financial shock. This is achieved by restricting all

shocks except the financial one to their unconditional distribution. The second scenario is a

recession not driven by the financial shock. To implement this, we restrict the financial shock

to retain its unconditional distribution, and allow all the other shocks to deviate from theirs.

Figures 7 and 8 compare the results. The financial recession has a much more severe

impact on stock prices, credit spreads and bank profitability. Moreover, the impact of the oil

price is of opposite sign, indicating that non-financial recessions are often associated with

increases in oil prices. As for the plausibility of the exercise, for the non-financial recession,

the posterior mode of the calibrated KL measure is 0.68, whereas for the financial recession it

is 0.86. We interpret this result as reflecting the fact that in the sample, financial recessions

are a relatively infrequent event, and most postwar recessions appear to have involved a

mixture of non-financial factors. Therefore, these results based on relatively infrequent events

should be interpreted with caution. The results of this section highlight that if the scenario

is driven by a financial shock, even mild contractions in economic activity can result in large

damage to banks’ balance-sheet variables.

35See https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20190213a1.pdf

downloaded on January, 31, 2020.
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7. Conclusion

We have provided a general and flexible framework to construct structural scenarios based

on minimalistically identified VARs, paying close attention to the uncertainty stemming from

estimation, identification, and future shocks. While there will always be limits to the kinds

of experiments that can be performed on linear Gaussian models, we hope that our methods

facilitate a middle ground between relying on empirical models, which remain silent about

the underlying causal mechanisms, and committing to the specific details of a particular

structural model, which will give sharper, but surely misspecified answers.
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Figure 1: Answers to Two Alternative Questions

(a) Conditional Forecast (‘Most likely path for output and inflation given path for FF rate’)
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(b) Structural Scenario (‘Most likely path for output and inflation if monetary policy shocks drive path for FF rate’)
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Note: For each panel, the solid black lines represent actual data, the solid red line is the conditioning
assumption on the fed funds rate, the solid blue line is the median forecast for the remaining variables and
periods, and the blue shaded areas denote the 40 and 68% pointwise credible sets around the forecasts. The
dotted gray lines represent the median unconditional forecast.
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Table 1: Summary of Forward Guidance FOMC Statement Language

Economic Conditions Language NSR
Growth Inflation

Q3 2003 “upside and downside risks [...] “risk of inflation becoming “policy accommodation can be maintained −
roughly equal” undesirably low” for a considerable period”

Q1 2004 “upside and downside risks [...] “probability of an unwelcome fall[...] “patient in removing +
roughly equal” almost equal to that of a rise” its policy accommodation”

Q2 2004 “upside and downside risks [...] “risks to [...] price stability “policy accommodation can be removed −
roughly equal” moved into balance” at a pace that is likely to be measured”

Q3 2011 “Considerably slower” “picked up” “low levels warranted at −
least through mid 2013”

Q1 2012 “expanding moderately” “at or below mandate” “low levels warranted at −
least through late 2014”

Q3 2012 “moderate pace” “subdued” “at least through mid 2015” −

Figure 2: Monetary Policy: Impulse Response Functions to anticipated vs unanticipated
shocks
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Note: The blue (lighter) shaded area represents the 68% (point-wise) HPD credible sets for the IRFs and
the blue dotted lines are the median IRFs to an expansionary unanticipated monetary policy shock of one
standard deviation. The red (darker) shaded areas and red solid lines display the equivalent quantities for
the anticipated policy shock.
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Figure 3: Distribution of Shocks Underlying Different Exercises

(a) Conditional-on-Observables Forecast
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(b) An Odyssean Scenario
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(c) A Delphic Scenario
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Note: For each panel, the gray shaded area represents the probability density function (p.d.f.) of a standard
normal distribution, whereas the broken blue line is the p.d.f. of the different shocks at horizon h = 1 for
the three variants of the “dovish” scenario. MP stands for unanticipated monetary policy shocks, AMP for
anticipated monetary policy shocks, and AD for aggregate demand shocks.
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Figure 4: A Delphic Scenario
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Note: For each panel, the solid black lines represent actual data, the solid red line is the conditioning
assumption on the fed funds rate, the solid blue line is the median forecast for the remaining variables and
periods, and the blue shaded areas denote the 40 and 68% pointwise credible sets around the forecasts. The
dotted gray lines represent the median unconditional forecast.

Table 2: Risk Assessment of Structural Scenarios

Calibrated KL g at Risk π at Risk p(low π, g) p(g < 0)

Unconditional 0.5 −1.2% −0.7% 6.5% 26%

“Dovish - Odyssean” no uncertainty 1 1.8% 0.8% 0.1% 0.4%

“Dovish - Odyssean” with uncertainty 0.83 −2.0% −1.5% 7.4% 26%

“Back to PL Target” with uncertainty 0.73 −2.4% −1.3% 5.0% 36%

Note: The first column reports the posterior mode across draws of the calibrated K metric. The next
columns report the growth-at-risk (g at Risk) and inflation-at-risk (π at Risk), defined respectively as the
values associated with the 5% lower percentile of the predictive distribution for four-quarter GDP growth
and inflation one year into the forecast horizon, as well as the probability of the average quarterly GDP
growth rate and inflation rate in the first two years of the forecast both being below 1%(p(low π, g)), and
the probability of negative average quarterly growth in the third year of the forecast (p(g < 0)). The first
row reports the results for the unconditional forecast, whereas the second row reports the case when the
uncertainty of both the conditioning variable and the non-driving shocks is set to zero, i.e., Ωf = 0ko×ko .
The last three columns report results for scenarios where uncertainty about both is allowed, i.e., Ωf = DD′.
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Figure 5: Comparison of SVAR and DSGE results

(a) Unanticipated Shocks Only
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(b) Anticipated and Unanticipated Shocks
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Note: For each panel, the solid black lines represent actual data. In the third column, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for the fed funds rate. In the first and second panels, the solid blue line and associated shaded
areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other variables given by
the SVAR. The dotted gray lines represent the median unconditional forecast from the SVAR. The broken
black lines represent instead the mean results obtained using the DSGE model of SW07.

35



Figure 6: Returning to the Price Level Target
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Note: For each panel, the solid black lines represent actual data. The solid blue lines and associated shaded
areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other variables given
such that the constraint that the price level returns to the target within a five-year horizon is satisfied. The
dotted gray lines represent the median unconditional forecast.
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Figure 7: A Stress Test Driven by a Financial Shock
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Note: For each panel, the solid black lines represent actual data. In the first two panels, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for GDP growth and the unemployment rate. In the remaining panels, the solid blue line and
associated shaded areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other
variables. The dotted gray lines represent the median unconditional forecast.
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Figure 8: A Stress Test Driven by Non-Financial Shocks
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Note: For each panel, the solid black lines represent actual data. In the first two panels, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for GDP growth and the unemployment rate. In the remaining panels, the solid blue line and
associated shaded areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other
variables. The dotted gray lines represent the median unconditional forecast.
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