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CONTRIBUTION OF THIS PAPER

» This paper is about nowcasting economic activity

» Propose Bayesian dynamic factor model (DFM), which features explicitly:

1. Low-frequency variation in the mean and variance
2. Heterogeneous responses to common shocks (leads/lags)
3. Fat tails

» Evaluate model and its components in comprehensive out-of-sample exercise
» On fully real-time, unrevised US data 2000-2019
» Point and density forecasting
» Taking advantage of cloud computing

» Apply model out of sample to track the Great Lockdown of 2020

» New components critical to track activity during this period
» Incorporate newly available high-frequency data
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THE MODEL



THE MODEL: SPECIFICATION OF BASELINE

» Start from familiar specification of a DFM (e.g. Giannone, Reichlin, and Small,

2008 and Banbura, Giannone, and Reichlin, 2010)

» An n-dimensional vector of quarterly and monthly observables y; follows
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THE MODEL: SPECIFICATION OF SV

» Consider n-dimensional vector of observables y;, which follows
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» The time-varying parameters are specified as random walk processes
» Builds on Antolin-Diaz, Drechsel, and Petrella (2017)
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ESTIMATED TREND
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ESTIMATED VOLATILITY OF THE FACTOR
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» SV captures both secular (McConnell and Perez-Quiros, 2000) and cyclical
(Jurado et al., 2014) movements in volatility
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THE MODEL: ADDING HETEROGENEOUS DYNAMICS

» Modify the observation equation to be

Ay:) = ¢ + AL)f; + uy,

where A (L) contains the loadings on contemporaneous and lagged factors

» Camacho and Perez-Quiros (2010) first noticed that survey data was better
aligned with a distributed lag of GDP

» D’'Agostino et al. (2015) show that adding lags improves performance in the
context of a small model
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ESTIMATED HETEROGENEOUS DYNAMICS
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» Substantial heterogeneity in IRFs of to innovations in the cyclical factor
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THE MODEL: ALLOWING FOR FAT TAILS

» Modify the observation equation to be

A(y: — o) = ¢ + A(L)f; + uy,

where the elements of o; follow t-distributions:
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» The degrees of freedom of the t-distributions, v;, are estimated jointly with the
other parameters of the model
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NEWS DECOMPOSITIONS: WHAT FAT TAILS ACHIEVE

---------- Basic DFM (Gaussian)

Full Model (Student-t outliers) e Basic DFM (Gaussian) Full Model (Student-t outliers)
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» Update of nowcast nonlinear and nonmonotic in forecast error of releases

» Some (hard) data gets more importance
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INTERACTIONS BETWEEN THE NEW COMPONENTS

» Standard DFM model heavily influenced by persistent and timely surveys

> Heterogeneous dynamics “rebalance” the panel, by allowing higher weight to
“hard” variables, such as IP, retail sales, etc...

» ...but hard variables are prone to fat tailed observations

» Fat-tailed component captures these infrequent, large observations.

» This stabilizes the nowcast against high frequency outliers
» Interacts with the SV, which captures lower frequency changes in volatility
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INTERACTIONS BETWEEN THE

NEW COMPONENTS
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REAL-TIME EVALUATION EXERCISE



A REAL REAL-TIME EXERCISE

» The model is fully re-estimated every time new data is released/revised

P> The exercise starts in Jan 2000 and ends in Dec 2019: on average there is a data
release on 15 different dates every month =- 3600 vintages of data

» Thanks to efficient implementation, it takes just 20 min Gibbs sampler on a single
computer (we use 8,000 iterations/draws)

» Hierarchical implementaiton of the Gibbs sampler

» Vectorized version of the Kalman filter

» Would still mean almost 2 months of time to run the evaluation

» Use Amazon Web Services cloud computing platform
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EVALUATION RESULTS

FORECASTS VS. ACTUAL OVER TIME (US)
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» Long run trend eliminates the upward bias in GDP forecasts after the crisis
» Lead-lag dynamics improve the mode’s performance around turning points
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COMPARISON WITH EXTERNAL BENCHMARKS

SURVEY EXPECTATIONS AND NY FED MODEL
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THE GREAT LOCKDOWN



INSIGHTS ON NOWCASTING IN 2020: TWO AVENUES

1. Novel model components help tracking activity in 2020

» Many formal models simply produce nonsensical results
» Combination of SV, heterogeneous dynamics and fat tails allow for stable tracking

2. How to incorporate ‘alternative data’ in the DFM machinery

» Novel data sources with very small history have become available
> Tie together with observations of closely-related traditional series
» Contributes to more timely assessment of the downturn
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TRACKING DAILY ACTIVITY
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» Model with fat-tails produces stable estimates, is able to capture features like the
strong rebound of economic activity during the partial re-opening
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TRACKING DAILY VOLATILITY
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» The volatility of underlying economic activity can be measured in real time. It
shot up massively during the COVID lockdown and has stayed elevated since.
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FAT TAILED OBSERVATIONS
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> Model captured rebound in retail sales based on history of similar patterns
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NOWCASTS AS OF JUNE 2020

BASIC DFM (LEFT) VS. FULL MODEL (RIGHT)
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» Persistent decline or more V-shaped recovery?

» Heterogeneous dynamics capture rebound in GDP despite persistent decline in
other series (in particular surveys)
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USING NEW DATA SOURCES IN THE DFM

Monthly Indicator Start High Frequency Proxy Freq. Start Estimated
Real Consumption (excl. durables) Jan 67 Credit Card Spending (Ol) D Jan 20 N
Payroll Empl. (Establishment Survey)  Jan 47 Homebase D Mar 20 N
Civilian Empl. (Household Survey) Feb 48  Dallas Fed RPS BW  Apr 20 N
Unemployed Feb 48 Dallas Fed RPS BW Apr 20 N
Initial Claims for Unempl. Insurance Feb 48 Weekly Claims (BLS) W Jan 67 N
U. of Michigan: Consumer Sentiment  May 60 Rasmussen Survey D Oct 04 Y
Conf. Board: Consumer Confidence Feb 68 Rasmussen Survey D Oct 04 Y
U.S. Vehicle Miles Traveled Jan 70 Apple Mobility Trends D Jan 20 N
Real Cons. of Food Services Dec 69  Open Table Reservations D Jan 20 N

> “New data” has short history

> Key idea: use new data in combination with similar “traditional” series
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USING NEW DATA SOURCES IN THE DFM
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» Incorporating new data enables faster tracking of the collapse in real time
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